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Thermal Science and Engineering With Emphasis on Porous Media
This special issue of JAM brings together 16 selected papers
from the First Conference on Thermal Engineering held in Beirut
on May 31–June 4, 2004. I would like to express my gratitude to
the Editor of JAM, Professor McMeeking, for dedicating a special
issue of this prestigious journal to selected papers of the inaugural
conference on Thermal Engineering.

It has always been the tradition for scientists from the Middle
East and the Gulf region, as well as North Africa, to conduct their
graduate studies abroad, particularly in North America and Eu-
rope. Governments in the region are committed to improving un-
dergraduate education, but until recently it has been the norm not
to focus so much on graduate education. Building research capa-
bility in institutions of higher learning and attracting highly moti-
vated staff to advance the research agenda were not among the top
priorities. But, higher education in this part of the world has
started to change thanks to the foresight of the leaders in the
region. However, the fact remains that highly-skilled scientists
and engineers from the Middle East, the Gulf region, and North
Africa sought and are still seeking work abroad in academic and
research institutions.

Well-defined venues dedicated to contacts between the academ-
ics and researchers in the institutions of higher learning in the
region and their counterparts abroad are almost nonexistent. The
purpose of starting a biannual international conference to be ro-
tated around the Middle East, Gulf, and North African region
countries is to meet this need and provide a well-structured plat-
form to boost research activity and productivity in the region as
well as providing a point of contact and networking. Establishing
a recurring platform which will serve as a focal point for the
gathering of scientists and engineers from the region working
abroad, in particular in Europe, North America and other countries
of the industrial world, and their colleagues in the countries of the
region was deemed essential. Thermal Engineering was selected
as an umbrella title for the Conference series because of its en-
compassing meaning and because this research area is of great
importance to the region. Topics related to environment, energy,
petroleum and construction are examples of thermal engineering
crucial to the economic development and well being of the coun-
tries in the region.

Discounting the recent unfortunate events in Lebanon, the
country was poised to emerge from its long period of arrested
development at the time the decision was made to hold the first
Conference on Thermal Engineering in Beirut on May 31–June 4,
2004. Lebanon had come out of a long civil war and the long and
arduous process of rebuilding the country had started. Beirut had
experienced an explosive growth and rebuilding activity during
the last ten years with billions of dollars in investment, and had
regained some of its past glory and glitter worthy of its nickname
“Paris of the East” of the 1950s and 1960s before the civil war. It
was felt that the opportunity to start this exercise in Beirut, to be
rotated later to elsewhere, could not be passed up.

The Conference is the brainchild of Professor Ziad Saghir of
Ryerson University in Toronto, Canada. Professor Saghir’s com-

mitment and tireless efforts, not to mention his organizational
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skills, lay at the very foundations of the success of the Confer-
ence. The encouragement, help, and personal day-to-day involve-
ment of Professor George Nasr from the Lebanese University in
Beirut was also crucial and played a major role in this success
story. The Conference has been very successful beyond our best
expectations. The success of the Conference would not have been
achieved without the support of the Lebanese and Canadian gov-
ernments. The support provided by both governments is gratefully
acknowledged. The Lebanese government was enormously sup-
portive of the enterprise and the Canadian Embassy in Beirut was
instrumental in making it a success. A large audience of scientists
attended the meeting in the beautiful spring weather of Beirut and
enjoyed the excellent Lebanese hospitality. The next Conference
on Thermal Engineering is scheduled to be held in the United
Arab Emirates at Al-Ain on January 3–6, 2006. At the time of this
writing all indications are the success of the first Conference on
Thermal Engineering will be duplicated and perhaps even
eclipsed.

The common theme tying together more than half the contribu-
tions in this collection of selected papers is flow in porous me-
dium and in particular thermal issues in porous media. A number
of papers in this group are related to issues directly relevant to the
oil industry starting with the review article on the Soret effect.
Fluid flow through porous media is encountered in many different
branches of science and engineering, ranging from agricultural,
chemical, civil and petroleum engineering, to food and soil sci-
ences. Scientists, engineers, and politicians recognize the eco-
nomic importance of enhancing oil recovery techniques, in addi-
tion to their growing concerns about pollution and the quality of
the water obtained from the ground. Over the past decades, flow
through porous media has been extensively studied experimen-
tally and theoretically as it is at the very heart of various industrial
processes central to energy production and to environmental is-
sues.

It is only appropriate to open the lineup of the 16 selected
papers in this special issue with two pace-setting review articles
by well-known experts Jean K. Platten, who reviews the latest in
Soret effect research, and Georgy Lebon et al., who summarize
thermodynamic theories in use and explore the foundations of a
unified extended thermodynamic theory.

The name “Soret effect” is usually attributed to mass separation
induced by temperature gradients. The effect was discovered in
1879 by the Swiss scientist Charles Soret who noticed that a salt
solution contained in a tube with the two ends at different tem-
peratures did not remain uniform in composition. The salt was
more concentrated near the cold end than near the hot end of the
tube. Charles Soret concluded that a flux of salt was generated by
a temperature gradient resulting, in steady state conditions, in a
concentration gradient. Although the German C. Ludwig de-
scribed the same phenomenon several years before in 1856 in a
short communication, the phenomenon bears his name because
Soret studied the effect rather in detail and formulated the funda-
mental equations describing the phenomenon. The Soret effect

plays an important role in the operation of solar ponds, biological
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systems, and the microstructure of the world’s oceans. In biologi-
cal systems mass transport across biological membranes induced
by small thermal gradients in living matter is an important factor.
One of the challenges in optimizing exploitation of oil reservoirs
is a good knowledge of the fluid physics in crude oil reservoirs.
Today, the modeling methods are based on pressure-temperature
equilibrium diagrams and on gravity segregation of the different
components of crude oil. However, improved models which more
accurately predict the concentrations of the different components
are necessary. The concentration distribution of the different com-
ponents in hydrocarbon mixtures is mainly driven by phase sepa-
ration and diffusion, and the Soret effect plays an important role.

The aim of the second review paper by Georgy Lebon, Thomas
Desaive, and Pierre Dauby is to convince the reader that the ex-
tended irreversible thermodynamics �EIT� theory provides a valu-
able tool for studying a large variety of macroscopic processes.
The underlying principles which hold together the edifice of clas-
sical irreversible thermodynamics �CIT� are reviewed and familiar
laws such as Fourier’s and Fick’s are derived from the framework
of CIT as well as the Dufour and Soret effects. However, all field
equations derived using the framework of CIT are parabolic im-
plying that any disturbance anywhere in the system is felt instan-
taneously at all other points which is a violation of the fundamen-
tal principle of causality. Furthermore CIT is a linear theory which
holds only in the vicinity of equilibrium. These shortcomings at
the very foundations of CIT prompted the proposition of other
formalisms aimed at removing them. Extended irreversible ther-
modynamics �EIT� provides a unified description of a large body
of physical processes and remedies the shortcomings of CIT. The
formalism is based on the assumption that fluxes of heat, mass,
and momentum are also state variables as well as mass, momen-
tum, and temperature. The open problem in EIT is to develop the
evolution equations for the fluxes. The authors accomplish this by
neglecting the terms which are second order and higher. The field
equations are hyperbolic in EIT thereby removing the objection
raised in CIT due to the violation of the causality principle.

The next group of seven papers in this special edition cover
issues related to porous media flow and thermal management.

Transport phenomena in heterogeneous porous media are a
challenging research topic. Charles-Guobing Jiang, M. Ziad
Saghir, and M. Kawaji investigate numerically thermal diffusion
phenomena in a laterally heated heterogeneous porous cavity
filled with a binary mixture of methane and n-butane. The mod-
eling of the Soret effect in porous media is based on nonequilib-
rium thermodynamics. The investigation of the Soret effect in a
heterogeneous porous medium is important in itself, but the work
gains more in significance as the Soret coefficient, the ratio of the
thermal diffusion coefficient to molecular diffusion coefficient, is
not kept constant but calculated at each point of the computational
grid as a function of the temperature, pressure, and the composi-
tion of the fluid mixture. The phenomenon of natural convection,
induced by two separate sources of buoyancy, through porous
media has been recently studied extensively due to its importance
in many natural and industrial problems. In double diffusive con-
vection, the solutal field results from the imposition of solutal
boundary conditions on the system. In Soret induced convection,
solutal gradients are due to the thermal diffusion in a binary mix-
ture, initially homogeneous. In both cases, the dynamics of heat
and mass transfer can be very different from those driven by the
temperature field alone.

In the next paper A. Bahloul et al. report an extensive analytical
and numerical study of natural convection of a binary fluid in-
duced by double diffusivity and Soret effect in a saturated vertical
porous annulus. Both cases of buoyancy opposing and helping the
motion are addressed. Uniform heat fluxes are applied to the ver-
tical walls while the horizontal walls are impermeable and adia-
batic. Solutal gradients are assumed to be induced either by the
imposition of constant gradients of concentration on the vertical

walls �double diffusive convection� or by the Soret effect.
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D. B. Ingham et al. develop new mathematical and numerical
techniques to deal with porous materials which undergo several
orders of magnitude changes in their Darcy numbers. Flow
through a composite channel that has undergone a vertical fracture
is considered. The vertical connecting channel is also composed
of a composite material. In the case of composite channels with
fractures in geological applications order of magnitude changes in
the Darcy number result in very large changes in the pressure in
the vicinity of the interfaces between these materials, thus posing
a challenge for numerical algorithms. Geological configurations
involving discontinuities in channel height with sections of the
channel composed of several layers of different porous materials
occur in oil reservoirs and groundwater flows. The influence of
these discontinuities on the fluid flow through regions of different
permeability is nothing short of drastic.

Many industrial and environmental problems involve flow in
fractured porous media, like oil production, nuclear waste storage,
and groundwater pollution. The computation of the full permeabil-
ity tensor in fractured heterogeneous media as well as other pa-
rameters such as the mass exchange coefficient presents a chal-
lenge. The paper by Moussa Kfoury et al. addresses the use of
homogenization methods to estimate constitutive parameters like
permeability and fracture/matrix exchange coefficient at large
scale in fractured heterogeneous media. The inspiration for this
paper came from the groundbreaking work of Barenblatt, Zheltov,
and Kochina, “Basic Concepts in the Theory of Seepage of Ho-
mogeneous Liquids in Fissured Rocks” published in 1960 �the
first reference in the paper�, which blazed the path for several
investigations since then along these lines.

Porous media are utilized in many industrial and natural pro-
cesses as an effective means for the transport and storage of heat
energy. Examples include heaters, dryers, cooling units, exchang-
ers, and biological tissue. Most of the studies on packed beds
involve the flow of the fluid phase through a fixed solid bed, and
a few only deal with moving beds. Experimental investigations of
heat transport in moving packed beds are usually difficult to carry
out due to limited access to the inside of the packed bed, and to
operating conditions that very often are not ideal for experimen-
tation such as high temperature and pressure. Numerical modeling
is used as a complementary, and sometimes as the sole, means to
gain a better understanding of the phenomena taking place in
packed beds and in particular in moving packed beds. Redhouane
Henda and Daniel Falcioni study numerically the thermal perfor-
mance of the preheater, essentially a tube-and-shell heat ex-
changer in the nickel carbonyl process. After leaving the pre-
heater, the pellets enter a cold-wall reaction zone where coatings
of nickel are deposited onto the pellets. Inefficiencies in heat
transfer in the preheater greatly affect nickel deposition rate be-
cause of sensitivity of the diffusion controlled process to pellet
temperature. Both one and two equation volume averaging models
may be used to investigate transport phenomena in porous media.
Averaging over a representative elementary volume containing
both the fluid and solid phases yields the one-equation model, and
averaging separately over each of the phases in the same repre-
sentative volume results in a separate energy equation for each
individual phase referred to as the two-equation model. The one-
equation model is valid when the temperature difference between
the solid and fluid phases is negligible, and is useful for compari-
son with experimental data as temperature measurements in a
packed bed do not distinguish between solid and fluid phase tem-
peratures. The two-equation model is used when thermal ex-
change between the two phases is not effective, and allows for a
better understanding of the interactions between the two phases.
The authors show that there is no appreciable difference between
the two models under the investigated conditions. Further, they
show that adopting a constant temperature at the preheater wall,
that is directing the flue gas perpendicular to the preheater tube

and decreasing the pellet velocity in the packing bed, improves
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the thermal efficiency throughout the preheater greatly, and the
difference in temperature from pellet to pellet at the preheater
outlet is reduced from �120 °C to �55 °C.

MHD mixed convection for the buoyancy opposing flow in
porous media has not yet been adequately addressed in the litera-
ture. Rebhi A. Damseh investigates the MHD-mixed convection
heat transfer problem from a vertical surface embedded in a po-
rous media. The effect of transverse magnetic field and radiation
heat transfer are examined. Both types of mixed convection heat
transfer problem, that is the buoyancy aiding flow and the buoy-
ancy opposing flow, are investigated. In the former case increasing
the magnetic field number will decrease the velocity inside the
boundary layer, and at the same time the temperature increases;
the effect of the magnetic field in this case is to decrease the heat
transfer rates. Increasing radiation-conduction parameter will de-
crease local Nusselt numbers for both buoyancy aiding and op-
posing flows. The effect of increasing porosity is to increase and
decrease the local Nusselt number for the buoyancy aiding and
opposing flow, respectively. The effect of increasing magnetic
field parameter is found to decrease the local Nusselt number.

Worldwide increase in energy cost and energy consumption re-
quires more effective use of energy. Hence, ways of decreasing
energy losses have never been more important. Second law based
methods are well suited to analyze the overall energy performance
in order to identify optimization criteria. It is well known that heat
transfer rates are enhanced when and wherever porous materials
are used. Although porous substrates generate a high pressure
drop, they remain a good passive technique for heat transfer en-
hancement. Nadia Allouache and Salah Chikh search for an opti-
mum solution, a compromise between hydrodynamics and thermal
performance. A second law analysis based on the evaluation of
entropy generation due to both fluid friction and heat transfer is
developed and applied to laminar forced convection flow in a
double pipe heat exchanger with a porous medium of variable
thickness in the annular gap attached to the inner pipe. The mini-
mization of the rate of entropy generation, due to fluid friction and
heat transfer, depends on the porous layer thickness, its permeabil-
ity, the inlet temperature difference between the two fluids, and
the effective thermal conductivity of the porous substrate. An in-
crease in the effective thermal conductivity of the porous medium
seems to be thermodynamically advantageous. Rather surpris-
ingly, the fully porous annular gap yields the best results in terms
of the rate of total entropy generation.

The contribution by Konstantin Kostarev, Antonio Viviani, and
Andrew Zuev presents an experimental study of thermo- and
soluto-capillary Marangoni convection around a gas bubble in an
inhomogeneous fluid with a vertical thermal or surfactant concen-
tration gradient. It is well known that Marangoni convection may
be driven by surface tension gradients due either to thermocapil-
lary or soluto-capillary effects. The former has received consider-
able attention as temperature differences are very common in liq-
uid systems. However, the soluto-capillary convection has not
been adequately studied. Bubble migration in a liquid may be
caused by either type of Marangoni convection. Convection
caused by surface tension gradients due to concentration inhomo-
geneities, for instance, of dissolved surfactant along the free
liquid/gas interface, attracts considerable interest because of its
importance in manufacturing technologies. In microgravity when
gravity-induced mechanisms of motion are absent or reduced Ma-
rangoni convection is the main driving mechanism determining
the behavior of gas inclusions in many manufacturing processes.
Among these are composite and foamy materials, formation and
solidification of alloys, degassing of liquid substances in glasses,
ceramics, crystals, and metals. The influence of the adsorbed in-
soluble surfactant layer at the bubble/drop interface on the ther-
mocapillary convection is well established experimentally in the
literature. The surfactant, transported by the convective flow to the
trailing pole of the bubble, establishes surfactant concentration-

induced Marangoni stresses opposing those caused by the thermal
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gradient. As a result, the motion driven by thermocapillary forces
is slowed down drastically due to the presence of the surfactant.
However, the convective motion generated by the external con-
centration gradient of surfactant dissolved in the surrounding fluid
has not been studied. The influence of the diffusive and convec-
tive mass transfer mechanisms are determined by the characteris-
tic times of surfactant and heat diffusion. The former are two or
three orders of magnitude longer than those of heat diffusion.

The next three contributions address issues related to natural
convection. The manufacturing of advanced materials is greatly
facilitated in a microgravity environment as buoyancy-induced
convection is suppressed or greatly reduced in magnitude. But
small vibrations existing on space platforms can totally or sub-
stantially alter the fluid behavior under microgravity, thus leading
to undesirable semiconductor and protein crystal properties. Thus,
there is a need to understand and control the effects of vibrations
on fluid systems relevant to material processing aboard space plat-
forms including the g-jitter effects. Many studies have been con-
ducted on fluid-induced vibrations of solid structures. However,
the reverse situation of vibration-induced fluid motion, in a closed
container full of liquid, has not yet been fully explored. Samer
Hassan et al. investigate theoretically and experimentally the ef-
fect of small vibrations on the motion of a solid particle sus-
pended in a fluid cell. An inviscid model is developed to predict
the vibration-induced motion of the solid particle suspended by a
thin wire in the water-filled rectangular cell which vibrates hori-
zontally. The inviscid fluid assumption is valid when the inertial
forces are more important than the viscous force, which is equiva-
lent to a very thin boundary layer compared to the particle radius.
The validity of this assumption is supported by good agreement
between the model predictions and the experimentally measured
amplitudes for steel particles in water at different cell vibration
amplitudes and frequencies. Both their model and experimental
data show the existence of a resonance frequency. At low frequen-
cies the amplitude of the vibratory motion of the particle is lin-
early proportional to the amplitude of the fluid motion in the cell.
At higher cell vibration frequencies well above the resonance fre-
quency, both the model and experiments indicate that the particle
amplitude becomes constant and independent of the wire length.

Shari J. Kimmel-Klotzkin and Fadi P. Deek consider a difficult
problem—that of computing the time evolution of a rotating tur-
bulent convective flow generated by a buoyancy source of finite
size at a relatively high Rayleigh number. The large eddy simula-
tion �LES� with the Smagorinsky subgrid scale model is used. For
large-scale geophysical flows, the Coriolis effect due to the rota-
tion of the Earth becomes an important influence in the evolution
of the flow. However, the Smagorinsky model is not consistent
with a non-inertial reference frame and thus is not the optimal
choice for this type of flow. Global oceanic circulation simulations
are very important in the study of climatic change. Buoyancy
effects due to gravitational forcing can drive large-scale oceanic
circulations. Natural phenomena that cause buoyancy driven cir-
culations in the ocean include evaporation, extreme weather con-
ditions such as storms, freezing at the surface, and heating through
the ocean floor as a result of megaplumes. Numerical simulations
of turbulent convection under the influence of rotation will help
understand mixing in oceanic flows. Direct numerical simulation
�DNS� techniques can accurately model rotating convective flows
and give an “exact” solution to the governing equations but are
limited to relatively low Reynolds numbers due to insufficient
computational resources, as they may require hundreds of hours of
CPU time and tens of millions of grid points even for a flow field
bordering on the turbulent regime. By using a large eddy simula-
tion �LES�, which involves modeling the small scales and resolv-
ing only the large scales, a similar computation could be per-
formed in less than 100 hours of CPU time using a number of grid
points less than an order of magnitude smaller. The results dem-
onstrate that LES can be used to qualitatively model large scale

rotating flows. The resulting flow structure is in good agreement
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with the limited available DNS simulations and experimental re-
sults. The results also demonstrate that the qualitative behavior of
vortices which form under the source depend on the geometry of
the flow. An eddy viscosity model is inadequate to accurately
model the transition to turbulence between the convective plume
and the quiescent ambient fluid, and it is suggested that other
types of subgrid modeling should be used in future studies.

Low Prandtl number fluids present a challenge in heat transfer
studies. They generate very strong diffusive thermal effects which
should be taken into account in numerical modeling. Thus bound-
ary layer approach is not suitable and extended computational
domains need to be employed for accurate numerical solutions.
The common thread for the next two papers is low Prandtl number
fluids.

Mahfoud Djezzar and Michel Daguenet investigate the influ-
ence of the slope angle on the natural steady convection in an
annulus between two elliptic confocal ducts. A primitive function
formulation of the finite volume method is used. The effect of the
inclination on the Nusselt number is examined for low Prandtl
number fluids and for various Rayleigh numbers. Many cooling
and heating devices used in engineering applications such as solar
collectors, electronic equipment, certain types of nuclear reactors,
and electric transformers can be modeled as vertical parallel plate
channels. The focus of most studies in the literature is on air and
water as working fluids. However, low Prandtl number fluids em-
ployed in the thermal design of core reactors behave differently
than air and water. Liquid metals are of great engineering interest
due to their unique heat transfer capabilities. In nuclear power
plants, if the pump cooling system fails, the hot reactor core
would cool off by natural convection with liquid metal as the heat
transfer medium. These fluids possess low or very low Prandtl
numbers of the order 10−2. They present very strong diffusive
thermal effects which should be taken into account in numerical
modeling. For this reason the boundary layer approach is not suit-
able and extended computational domains need to be employed to
generate accurate numerical solutions. Antonio Campo, Oronzio

Manca, and Biagio Morrone present a numerical investigation of
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the natural convection of a low Prandtl number fluid in vertical
parallel plate channels in the Rayleigh number range 103−106 and
for channel aspect ratios 5, 10, and 15.

Heat and mass transfer from a rotating disk has led to important
fluid dynamics studies since von Karman introduced his much
celebrated similarity transformation. However, studies with non-
Newtonian fluids are relatively few and new. Available literature
is restricted to shear rate-dependent viscosity fluids and heat trans-
fer studies have been favored more than mass transfer. Rashaida et
al. consider mass transfer from a rotating disk to a Bingham fluid
with applications to slurries and suspensions which exhibit yield
stresses.

It may be appropriate to close this special edition with another
paper related to petroleum management issues. A topic of impor-
tance to crude oil transportation as well as other fluids is investi-
gated by Mohand Kessal and Rachid Bennacer who model the
effect of dissolved gases on liquid transients in pipelines. In order
to improve the reliability and the performance of hydraulic sys-
tems it is important to be able to predict the onset and the degree
of cavitation during transient flow. Transient cavitation without
dissolved gas release is well covered in the literature. But avail-
able studies with gas release are not as extensive. A mathematical
model which describes homogeneous transient two-phase flow in
a pipeline which takes into account gas release is presented. Cav-
ity volume formation, during transients in a homogeneous gas-
liquid mixture flow, is modeled and numerically simulated by tak-
ing into account the effect of the degassing.

In closing, I would like to express my appreciation to the
anonymous reviewers and the authors. Liz Montana, Editorial As-
sistant of JAM, deserves special thanks.

Dennis A. Siginer
Guest Editor

Wichita State University

e-mail: dennis.siginer@wichita.edu
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The Soret Effect: A Review of
Recent Experimental Results
In the first part of the paper, we recall what the Soret effect is, together with its appli-
cations in science and industry. We emphasize the need to have a reliable data base for
the Soret coefficient. Next we review the different techniques to measure the Soret coef-
ficient (elementary Soret cell, beam deflection technique, thermal diffusion forced Ray-
leigh scattering technique, convective coupling and, in particular, the onset of convection
in horizontal layers and the thermogravitational method). Results are provided for sev-
eral systems, with both negative and positive Soret coefficients, and comparison between
several laboratories are made for the same systems. We end with “benchmark” values of
the Soret coefficient for some organic liquid mixtures of interest in the oil industry and to
which all future new techniques should refer before gaining confidence. We conclude that
correct values of the Soret coefficient can be obtained in earth conditions and we deny the
need to go to microgravity. �DOI: 10.1115/1.1992517�
1 Introduction
The Swiss scientist Charles Soret discovered, in 1879, �1� that a

salt solution contained in a tube with the two ends at different
temperatures did not remain uniform in composition: The salt was
more concentrated near the cold end than near the hot end of the
tube. He concluded that a flux of salt was generated by a tempera-
ture gradient resulting, in steady-state conditions, in a concentra-
tion gradient. Although the German Ludwig �2� described the
same phenomenon several years before in a one-page report, the
name “Soret effect” is usually attributed to mass separation in-
duced by temperature gradients because Soret studied the effect
rather in details, formulated equations and finally wrote 3 or 4
papers on the subject �1,3,4�. Today one writes for the x compo-
nent of the mass flux of the reference chemical compound in a
binary mixture

Jx = − �D
�c

�x
− �DTc0�1 − c0�

�T

�x
�1�

The first term in the r.h.s. of Eq. �1� is Fick’s law of diffusion,
with c the mass fraction of the reference component and D the
molecular �or isothermal� diffusion coefficient; the second term
describes the Soret effect �or thermodiffusion effect�, proportional
to the temperature gradient �T /�x, with DT the thermodiffusion
coefficient. Since the effect does not exist in pure fluids one usu-
ally writes c0�1−c0� factor of DT. But as a matter of fact, DT

remains concentration dependant, exactly as D. Thus the second
term in the r.h.s. of Eq. �1� describes mass separation due to a
temperature gradient, whereas the first describes homogenization
by normal diffusion. The two terms are thus of opposite sign, and
when they are of equal intensity, we are in steady-state conditions
Jx=0 implying

�c

�x
= −

DT

D
c0�1 − c0�

�T

�x
�2�

and the Soret coefficient is defined as
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ST =
DT

D
�3�

The Soret coefficient may be positive or negative depending on
the sign of DT or on the sense of migration of the reference com-
ponent �to the cold or to the hot�. In absolute value an order of
magnitude for usual organic mixtures or aqueous solutions is
�ST��10−3−10−2 K−1.

According to Eq. �2�, for a mixture containing 50 wt % of each
component �c0=1/2 ; 1−c0=1/2� and for a temperature differ-
ence �T of 4 K between hot and cold parts of the system, the
difference in mass fraction �c numerically will be equal to the
Soret coefficient. Typically, �c is of the order of 1%, sometimes
smaller. But even if the separation remains small, the Soret effect
has a lot of implications. Let us cite the operation of solar ponds
�5�, the microstructure of the ocean �6� since in both cases we
have salty water and temperature gradients, and perhaps convec-
tion in stars �7�. The role of the Soret effect also has been evoked
in biological systems, namely mass transport across biological
membranes induced by small thermal gradients in living matter
where thermodiffusion could assume a sizable magnitude for an
ensemble of cells with the dimension of an organ or a tumor �8�.
Another important application of the Soret effect is in natural
hydrocarbon reservoirs �9,10�. One of the challenges in optimiz-
ing exploitation of oil reservoirs is a perfect knowledge of the
fluid physics in crude oil reservoirs. Today, the modeling methods
are based on pressure-temperature equilibrium diagrams and on
gravity segregation of the different components of crude oil. How-
ever, improved models which more accurately predict the concen-
trations of the different components are necessary. The concentra-
tion distribution of the different components in hydrocarbon
mixtures is mainly driven by phase separation and diffusion. One
of the objectives in the oil industry is the prediction, as precisely
as possible, of the gas-oil-contact in an oil reservoir. In order to
achieve this goal, the local composition must be known. One of
the reasons of a local compositional variation is molecular segre-
gation in the gravitational field. Aside this important “force,” the
geothermal gradient �a few degrees per 100 meters� may also in-
duce local variations in composition due to the thermodiffusion
effect. In order to prove the implication of the Soret effect in
crude oils, experiments in packed thermogravitational columns
were undertaken by the group of Costesèque �11–14� on two
samples of different origin: Alwijn and Oseberg, two oil fields in
the North Sea. In packed thermogravitational columns we have
two concentric cylinders kept at two different temperatures thanks

to a flow of thermoregulated water. The space between the two
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cylinders is filled with a porous medium, e.g., zirconium oxide
spheres of given diameter. Next the porous medium is saturated
by the mixture. The component that goes to the cold �resp. to the
hot� cylinder under the effect of thermodiffusion is next advected
to the bottom �resp. to the top� under the action of buoyancy. Thus
a vertical concentration gradient for each component is built due
to the interplay between Soret effect and convection. Samples are
removed from two reservoirs at the top and at the bottom and
analyzed. Even a simple inspection by eyes shows that the bottom
sample is dark brown, whereas the top sample is almost clear
indicating that the components belonging to the light fraction dif-
fuse to the hot and are advected to the top; on the contrary the
components of the heavy fraction diffuse to the cold cylinder.
They also did a fine analysis by gas chromatography, analyzing
the different isomers as, e.g., for hydrocarbons containing 8 car-
bon atoms: n-octane, 2-methylheptane, 3-methylheptane,
4-methylheptane, 2-2 dimethylhexane, 3-3 dimethylhexane, 2-3
dimethylhexane, 2-4 dimethylhexane, etc. They extended the
analysis to all the isomers of ethyltoluene, trimethylbenzene, dim-
ethylbutane, dimethylpentane, to meta-, ortho-, and paraxylene,
and many more. In total 58 components were identified in the
light fraction and analyzed. The same was done for the heavy
fraction. By “analyzed” we mean that top and bottom concentra-
tions �or mass fractions� of each component was determined. But
in fundamental science, we need more than this. We need to quan-
tify the Soret effect by “numbers.” In Europe, there is a project
initiated by the EGRT �European Group of Research in Thermod-
iffusion� with the aim to study a ternary system composed of
dodecane �hereafter called C12�, isobutylbenzene �IBB�, and
1,2,3,4-tetrahydronaphtalene �THN�. Results are in progress and
all the 3 binaries were already investigated by 5 independent and
different labs and results published �15�. But for ternary systems,
there is no consent on the way to write the two independent
fluxes, i.e., equations analogue to Eq. �1� and on the definition of
the two independent Soret coefficients. Even in binaries, the mea-
surement of the Soret coefficient defined by Eq. �3� remains deli-
cate. Therefore, the paper is devoted to a summary of recent re-
sults that seem to us very safe, in contradistinction to the large
discrepancies that are sometime observed in the literature, see �16�
for an example, including recent microgravity determinations of
ST �17�.

2 Some Different Techniques to Measure the Soret
Coefficient

Arbitrarily we divide the different techniques into two groups:
The first group supposes convectionless systems and Eqs. �1� and
�2� apply; they are the correct working equations for the determi-
nation of the Soret coefficient. The second group of techniques
uses convective coupling. We will mainly focus on this second
group, simply because we made extensive use of these techniques.
By the way these techniques will be different depending on the
sign of the Soret coefficient we want to measure.

2.1 Convectionless Systems.

2.1.1 The Standard Soret Cell. A standard Soret cell �see Fig.
1� consists of two horizontal rigid plane plates, made of a good
heat conducting material, e.g., copper or stainless steel. The plates
are maintained at different temperatures by thermostatic circulat-
ing water in order to create a vertical temperature gradient in a
parallelepipedic working space �there are of course lateral walls
made of a poor heat conductivity material in order to minimize the
heat exchange with the surroundings�. The system usually is
heated from above in order to avoid free convection. Between the
plates a regular gap a is maintained by a brace made of, e.g., PVC
into which small holes are managed �at least one, sometimes sev-
eral in order to follow the kinetics of the separation�. In each hole

a watertight device is managed where curved hypodermic needles
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are inserted in order to remove very small liquid samples close to
the isothermal horizontal boundaries. The samples are analyzed
with a high resolution refractometer �n±0.00001� or densimeter
��±0.000001 gr/cm3� in order to get the concentration difference
�c between the top and bottom removed samples after compari-
son with calibration curves. Next the use of Eq. �2� rewritten as

�c = − STc0�1 − c0��T �4�

gives ST. Instead of considering �T as the temperature difference
between the two bounding plates �or between the two thermostatic
baths� it is much better to measure the local value of T �e.g., by
thermocouples� at the exact location of the removed sample. Cells
with 6 holes along the longer side are of common use �18� and at
different times samples are removed in order to follow the time
evolution of �c /�T given by

�c�t�
�T

= − STc0�1 − c0��1 −
8

�2 �
n odd

e−n2 t

�

n2 	 �5�

where � is the relaxation time defined by

� =
a2

�2D
�6�

Thus by considering the few first terms into the Fourier expansion
�5�, e.g., the first 5 terms, and by a curve fitting procedure to the
experimental points �c�t� /�T, it is possible to get simultaneously
ST=DT /D �from the value of the separation at the steady state�
and D �knowing the gap a between the two bounding plates�.
Thus as a byproduct, the thermodiffusion coefficient DT is also
determined.

2.1.2 The Beam Deflection Technique. The same type of cell
as described in Sec. 2.1.1 is also used in the beam deflection
technique �19–21�, the main difference being that two opposite
lateral walls are made of glass of good optical quality. The way to
measure the mass fraction gradient is, however, totally different.
Indeed in absence of any gradient, a laser beam perpendicular to
one of the lateral glass wall will cross the liquid layer horizontally
and hit the beam detection unit BDU at point A �Fig. 2�. Due to
the existence of vertical temperature and concentration gradients,

Fig. 1 Sketch of an elementary Soret cell
a resulting index of refraction gradient will be created according
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to

grad n =
�n

�T
grad T +

�n

�c
grad c �7�

In such a situation the laser beam, traveling in an index of refrac-
tion field, will not propagate horizontally, but will be deflected
and hit the BDU at position B. The distance AB is a measure the
deflection of the beam from which the index of refraction gradient
may be deduced. Clearly two calibration curves are needed �n /�T
and �n /�c; finally �since the temperature gradient is known�, the
mass fraction gradient is deduced and produces the value of the
Soret coefficient at the steady state. In addition one can make use
of the very different relaxation times for the establishment of the
temperature gradient and of the concentration gradient: Typically
there are two orders of magnitude difference between both relax-
ation times since in liquids the diffusion coefficient is much
smaller than the thermal diffusivity. Thus there is a quick process,
the establishment of the temperature gradient just after the ther-
mostatic baths are switched on, corresponding to a first fast varia-
tion of the index of refraction and a first deflection of the beam,
followed by the slow process, the establishment of the concentra-
tion gradient. If one follows the kinetics of the second deviation of
the beam, we have access to the diffusion relaxation time, thus to
D and subsequently to DT. Alternatively once the steady state is
reached, one could switch off the two thermostatic baths: The
temperature gradient is destroyed rather quickly, but the concen-
tration gradient will take a longer time to disappear. Once again
by following the time dependence of the deflection angle that has
to return to zero, we may have the isothermal diffusion
coefficient D.

2.1.3 The Thermal Diffusion Forced Rayleigh Scattering
Technique (TDFRS). In the TDFRS technique �22�, light is used to
create the temperature gradient, instead of “boundary conditions.”
A first laser beam is split into two beams of equal intensity. The
two beams emerging from the beamsplitter are focused by a lens
in the sample containing the liquid mixture �Fig. 3�a��. At the
intersection of the two laser beams, interference fringes are cre-
ated �Fig. 3�b�� and by putting some chemically inert dye in the
mixture a temperature grating is impressed, the temperature being
higher �typically of 100 �K� in the fringe of high light intensity.
And this periodic temperature field induces via the Soret effect a
periodic concentration field. Both the temperature grating and the
concentration grating create an index of refraction grating which
is itself read out by a second laser by Bragg diffraction. The
technique requires also two contrast factors �n /�T and �n /�c but
will not work in the vicinity of a maximum of index of refraction
as it is the case of some water-alcohol rich �90 wt % � systems.
But this is also true for any technique that uses the index of

Fig. 2 Sketch of an elementary Soret
refraction as a way to analyze the concentration gradient. In the

Journal of Applied Mechanics
TDFRS technique, the characteristic length is the fringes spacing,
i.e., �10 �m. Therefore, the temperature gradient is of the order
of 1 K/cm, as in more classical techniques where the gradient is
imposed by circulating water baths. A clear advantage of the TD-
FRS technique is the small relaxation time: Since the characteris-
tic length is 1 �m, the characteristic diffusion time will be of the
order of 1–10 milliseconds, instead of several hours with cells of
�1 cm size. However, in the TDFRS technique the experiment
must be repeated many times �e.g., 5000� and the results are av-
eraged. The possible role of convection has been discussed in �22�
showing that correct results are obtained by this technique.

2.2 Convective Coupling. In all convective coupling tech-
niques, the idea is to study the modification of the velocity field
�the pattern, the amplitude or the onset of convection in certain
circumstances� under the effect of thermodiffusion. Therefore, the
important parameter is the solutal contribution to the buoyancy
force �� .g. We need an equation of state for the density and
ignoring nonlinear terms we take

l using the beam deflection technique

Fig. 3 Crossing of the beams in the sample „a… and zoom on
cel
the fringes „b… in the TDFRS technique
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� = �0�1 − ��T − T0� + ��c − c0�� � 	 0; � 	 0 �8�

where � is the thermal expansion coefficient and � the mass ex-
pansion coefficient. They are both defined positively, because we
decide �arbitrarily� that c represents the mass fraction of the
heavier component. Of course the opposite choice could equally
be made without affecting the physical results. T0 and c0 are ref-
erence temperature and mass fraction �mean values�. As written
before, the important parameter is the solutal contribution to the
buoyancy, but relative to the thermal contribution. This parameter
is called the “separation ratio” 
 and, using Eq. �4� can be written
as


 =
��c

− ��T
=

�

�
STc0�1 − c0� �9�

2.2.1 Rayleigh-Benard Configuration. In the classical
Rayleigh-Benard configuration, the monocomponent horizontal
liquid layer is heated from below, inducing a potentially unstable
density gradient: Convection sets in provided the Rayleigh num-
ber overcomes some critical value Ra�0� with a numerical value
depending on boundary conditions �27�4 /4 or 1708 or…�. We
shall not enter here into the details of this well known hydrody-
namic stability problem �23�. For a binary liquid layer in the pres-
ence of the Soret effect, two cases must be considered depending
on the sign of the separation ratio. If 
 is positive, thermal and
solutal contribution to the buoyancy are of the same sign and
since the thermal contribution is destabilizing �we heat from be-
low� so is the concentration gradient; in other words the denser
component migrates to the cold upper boundary, and this is a
destabilizing process; the onset of convection will appear for a
temperature difference �or a Rayleigh number� much smaller than
that for a pure fluid system. If 
 is negative, thermal and solutal
contributions are of opposite sign and since the thermal contribu-

Fig. 4 Variation of the critical Rayleigh num
function of the separation ratio
tion is destabilizing, the concentration gradient is stabilizing: the
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denser component migrates to the hot lower boundary and the
onset of convection is delayed to a temperature difference �or
Rayleigh number� much greater than that for a pure fluid system.
This is what Fig. 4 shows, but one recognizes immediately that
the two curves for negative and positive separation ratio are quite
different: They correspond to a different mode of instability.
When 
 is negative, we have an inverted Hopf bifurcation and
instability arises as oscillations of increasing amplitude. The linear
hydrodynamic stability theory gives the variation of the critical
Rayleigh number as a function of the separation ratio see, e.g.,
�24� for a small review

Racrit

Ra�0� − 1 = 1.15
− 


1 + 
 +
1

Pr

�10�

and the Hopf frequency as well

� = 1.43
3�3

2 
 − 


1 + 
 +
1

Pr

�11�

In these two last equations, Pr is the Prandtl number Pr=v /�
where v is the kinematic viscosity and � the thermal diffusivity
�= /�C �: thermal conductivity and C mass specific heat�. Thus
an indirect way, but nevertheless a not less precise way to deter-
mine a Soret coefficient, is to measure the critical Rayleigh num-
ber and the associated Hopf frequency. Therefore, we need to
detect the onset of free convection as precisely as possible, to-
gether with a time record of the velocity each 2 s in order to
deduce the Hopf frequency. This is achieved by Laser Doppler
Velocimetry and with equipment specially dedicated to measure
extremely low velocities, down to 5–10 �m/s. In Fig. 5 we show
an example of the oscillatory onset of free convection that was

r in the Rayleigh-Benard configuration as a
be
recently obtained �25�. The experimental conditions are the fol-
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lowing: The working fluid is a mixture of water �90 wt % �
−isopropanol �10 wt % � in a parallelepipedic container of large
lateral extension compared to the fluid thickness �4.75 mm� and
comparable to Fig. 1, except that we heat from below; the tem-
peratures of the lower and upper bounding plates is thermoregu-
lated and the difference �T increased very slowly �mean value:
21°C�. After each temperature increase, we wait five times the
relaxation time, i.e., in the present case 8 h. Near the critical
point, �T is increased by steps of 0.1°C for a rough determination
of the critical Rayleigh number and by steps of 0.01°C for a
precise determination; below �T=1.84°C we have the rest stat,
even after 8 h. When �T is increased up to �T=1.84°C, convec-
tion sets in; however, we have to wait 1700 s after the last in-
crease of �T before to record for the first time measurable veloc-
ity amplitudes. In Fig. 5 an experimental point is taken each 2 s.
Thus from Fig. 5 we have two informations: The critical tempera-
ture difference for the onset of free convection from which the
critical Rayleigh number may be computed provided we have ac-
curate values of the viscosity and of the expansion coefficient, but
this is usually not a problem �see later�, and the Hopf frequency
from the Fourier transform of the time signal V�t� for small times,
say between 1700 s� t�2300 s; for t	2300 s, when the ampli-
tude of the velocity increases such that the nonlinear terms cannot
be ignored in the theory, there is a gradual change in the frequency
�or in the period�; the final frequency, corresponding to nonlinear
traveling waves differs from the Hopf frequency by one order of
magnitude. Having the critical Rayleigh number and the Hopf
frequency, we make use of Eqs. �10� and �11� to deduce the sepa-
ration ratio 
 and next ST, having the two expansion coefficients
� and � �and once again this is not a problem, see later�. If the
two values do agree within say a few %, then we may have con-
fidence in the technique. Moreover having two values for ST, we
take their mean to compare with other values found in the litera-
ture. This comparison exercise has been made for several systems
in �24�. The water �90 wt % �−isopropanol �10 wt % � system is
spectacular because of its large Soret coefficient �and thus Hopf
frequency� and that is why we did choose this system for showing
Fig. 5 as an example, but this system is not popular �besides
ourselves, only one other lab did investigate this system�. There-
fore, for a comparison between several labs the system water
�92 wt % �−ethanol �8 wt % � at 25°C is more appropriate. Table
1 gives a comparison between four different labs that use different
techniques and clearly the use of the onset of convection in a
Rayleigh-Benard experiment produces results in complete agree-
ment with other techniques.

Since the onset of free convection seems a convenient way to
measure negative Soret coefficients, we may think about using it
for positive values. There are two reasons why this will not work.

Fig. 5 Oscillatory onset of convection at �T=1.84 °C in the
system water „90 wt % …−isopropanol „10 wt % …. Mean tem-
perature: 21 °C.
First, the bifurcation is forward and “normal;” thus we lose the
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possibility given by the Hopf frequency to have an additional
experimental value of the Soret coefficient in the same experimen-
tal session. But moreover as shown by Fig. 4 there is a drastic
drop in the critical Rayleigh number and Eq. �10� cannot be used
because the instability mode is different. The variation of the criti-
cal Rayleigh number for positive values of the separation ratio is
of the type

Racrit = Ra0 1

1 + 
�Le + 1�
�12�

where Le is the Lewis number defined by Le=� /D. Since in
liquids the thermal diffusivity � is two orders of magnitude larger
than the mass diffusivity D, Le�100 and even for the modest
value 
= +0.2 �the solutal contribution to the buoyancy force is
only 20% of the thermal contribution�, there is a typical decrease
of a factor 20 in the Rayleigh number, thus in the temperature
difference needed to promote convection. For a layer of a few mm
thick �say 4 mm� the critical temperature difference for pure water
is of the order of 2°C, a convenient value that can be measured
accurately using commercial thermostatic baths. The addition of
alcohol �such that ST becomes positive� lowers the temperature
difference by a factor 20 down to 0.1°C. In other words we totally
lose accuracy. Therefore, for positive Soret coefficients the onset
of free convection is not the appropriate way to measure a Soret
coefficient unless the temperature of each bounding plate is con-
trolled at the 0.001°C level, which was not the case in our experi-
ments. Consequently we use another strategy: The thermogravita-
tional process.

2.2.2 The Thermogravitational Process. A thermogravitational
column usually consists of two vertical concentric cylinders at
two different temperatures in such a way to create a horizontal
temperature gradient. For reasons explained later, we prefer the
use of parallelepipedic columns made of two rigid vertical copper
plates A �see Fig. 6 and �27�� maintained at two different tempera-
tures by circulating water in circular cavities B managed in each
plate �only shown for the left plate in Fig. 6�. The gap between the
two plates is fixed and imposed by spacers C and D. In the upper
spacer D there are two small holes for the filling of the column
and for air to escape during the filling. Along the column height 5
sampling taps allow to remove with a syringe small quantities �1
and 2 ml� of the liquid, next analyzed to find their composition.
Indeed, since the temperature gradient is horizontal, under the
action of the Soret effect one of the components goes to the left
�or to the cold plate� and the other to the right �the hot plate�. The
component that thermodiffuses to the cold is advected to the bot-
tom, and the one that goes to the hot is advected to the top of the
cell. Thus the combined effect of thermodiffusion and convection
finally creates a vertical mass fraction gradient, resolved by the
sampling process. Finally in order to close the space available to
the liquid we need front and back windows. We used windows
made of glass of good optical quality in order to have optical
access in the column. Using once again LDV, we may follow the
time evolution of the velocity amplitude. Combined to the vertical
mass fraction gradient, we have two informations related to the
Soret coefficient from two separate experiments �that usually are
made at different times�.

Table 1 Comparison of the Soret coefficient of the system wa-
ter „92 wt % …−ethanol „8 wt % … obtained in different
laboratories

From
Rayleigh-Benard

experiments
�18�

Kolodner
�13�

Zhang
�14�

Bou-Ali et al.
�20�

−7.08 10−3 K−1 −7.13 10−3 K−1 −7.30 10−3 K−1 −7.05 10−3 K−1
The removed samples at the five sampling positions are ana-
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lyzed by measuring their density �the index of refraction could
equally work well� using the quartz U-tube vibrating densimeter
manufactured by Paar �DMA5000� having a resolution of
10−6 gr/cm3. Figure 7 shows a vertical mass fraction profile for
the system water �60.88 wt % �−ethanol �39.12 wt % �, a system
that has been investigated by several labs. The linearity of the
profile seems perfect. Of course we have to transform density into
mass fraction. To this end we prepared 13 samples around
60.88 wt % of water, namely between 58 and 64 wt %, by steps of
0.5 wt % taking for each prepared sample the density, Fig. 8. This
is our calibration curve giving also the mass expansion coefficient
� needed in the separation ratio, the relevant parameter when
measuring velocity amplitudes. Combining Figs. 7 and 8, we have
the mass fraction profile, in particular the mass fraction difference
between the top and the bottom of the column. We need of course
a correct working equation giving the thermodiffusive coefficients
from the knowledge of this mass fraction difference. This equa-
tion is derived from the Furry-Jones-Onsager theory, modified by
Majumdar for concentrated solutions �28–31�. Since this theory is
more than half a century old, we do not feel the necessity to
explain it here. Let us simply stress that the equations can be

Fig. 6 Sketch of the thermogravitational column
simplified when the gap between the two lateral walls of the col-
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umn is “large,” in practice for most of organic liquid mixtures,
larger than 1 mm, but this is actually the case. The working equa-
tion then reads:

�c = cbottom − ctop = 504
�

�g
DTc0�1 − c0�

H

e4 �13�

where v is the kinematic viscosity �the dynamic viscosity is mea-
sured for each system that we investigated by a falling ball Höp-
pler viscosimeter, instead of trying to interpolate between values
found in tables�, H the height of the column �H=530 mm�, e the
gap �e=1.58 mm�, and � the thermal expansion coefficient. This
last parameter is determined by measuring the density of the ini-
tial sample at different temperatures as shown in Fig. 9 between
21 and 24°C, since the mean working temperature was 22.5°C
�Tcold=20°C; Thot=25°C�. Let us mention that due to the simpli-
fications made in the theory for “large gap,” the temperature dif-
ference �T between the two walls no longer appears in Eq. �13�;
this is of course not true for the “small gap,” theory for which �c
is an increasing function of �T. We now do possess all the nec-
essary information to deduce from Eq. �13� the thermodiffusion
coefficient DT. But what we search is the Soret coefficient ST
=DT /D. Therefore, we have to find in a supplementary and inde-
pendent experiment the value of the isothermal diffusion coeffi-
cient D. This is achieved by the open ended tube technique �32�,
see Fig. 10. A small tube containing say the solute and the solvent
is immersed at time t=0 in a container of very large volume
compared to that of the tube and containing only the solvent. The
system is of course at constant temperature by a circulating water
flow and is covered to avoid evaporation. The solute diffuses out-
side of the tube and is not supposed to change the composition of
the bulk because of its large volume. Instead of having pure sol-
vent in the bulk and solvent+solute in the tube, the method works
equally well with a mixture of two components in the bulk and in
the tube, having, however, different mass fractions differing only
by a few wt % around the initial mass fraction of the mixture for
which we seek DT and D �one should take care that the mixture in
the tube has a density slightly higher than in the bulk to avoid free
convection currents�. The diffusion of the more concentrated com-
ponent in the tube obeys Fick’s law of diffusion

�c

�t
= D

�2c

�z2 �14�

Subjected initial and boundary conditions �c=c0 ∀z at t=0;

Fig. 7 Density profile in the thermogravitational column in the
system water „60.88 wt % …−ethanol „39.12 wt % …. Tcold=20 °C;
Thot=25 °C.
�c /�z=0 at z=0 and c=c� at z=L for t	0, where c� is the con-
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centration of the bulk supposed to be of “infinite” volume and,
therefore, of constant composition�, the solution of Eq. �14� is

c�z,t� − c� =
4

�
�c0 − c���

n=0

� sin��n +
1

2
�

z

L
�

2n + 1
e−�n + 1/2�2��2/L2�Dt

�15�

After a sufficiently long time �depending of course on D /L2�,
typically 24–48 h, the leading term n=0 in the Fourier expansion
is far sufficient to describe the time evolution of the average tube
concentration �c�t��=1/L�0

Lc�z , t�dz and its decay is exponential.
Thus the working equation for deducing D is

ln��2��c�t�� − c��
8�c0 − c��  = −

�2

4L2Dt �16�

Figure 11 shows the result from which D is obtained, knowing the
tube length L ��3 cm�. In fact this result is not based on the time
evolution of c in a single tube. Instead, we have several containers
�3 or 4�, and holders each containing 6–8 tubes. At time zero, all
the holders are each immersed in a different container. At a given
time, 2 tubes are removed from two different containers, mixed
�in order to attenuate experimental fluctuations� and analyzed by
densitometry for their mass fraction c.

We thus have a first way to measure a positive Soret coefficient:
From a first experiment in thermogravitational column we get DT.
From a second experiment �the open ended tube� we get D, and

Fig. 9 Thermal expansion coefficient in the system water

Fig. 8 Mass expansion coefficien
−ethanol „39.12 wt % …
„60.88 wt % …−ethanol „39.12 wt % …
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next we calculate the ratio DT /D. But there is another alternative:
The modification of the velocity amplitude followed by laser Dop-
pler velocimetry. Indeed in the same column the heavier compo-
nent migrates to the cold wall �since ST	0� and the lighter com-
ponent to the hot wall. Thus the solutal effect adds to the thermal
effect to increase the horizontal density gradient and the buoyancy
force. Since the amplitude of the vertical velocity component Va is
proportional to the horizontal density gradient

Va ÷ g
��

�x
÷ − �

�T

�x
+ �

�c

�x
÷ − �

�T

�x
�1 + 
� �17�

it is increased by a factor �1+
� with respect to the thermal effect
only. Thus the enhancement of the velocity amplitude is a measure
of the separation ratio 
, from which ST is deduced knowing the
thermal and mass expansion coefficient given in Figs. 8 and 9.
The establishment of the horizontal temperature gradient �T /�x is
a quick process whereas that of the mass fraction gradient �c /�x is
a slow process. But the most important point is that this horizontal
mass fraction gradient will almost be destroyed by convection
since the component that goes to the cold �resp. to the hot� will be
advected to the bottom �resp. to the top�, creating a vertical mass
fraction gradient �c /�z. In steady-state conditions, the horizontal
gradient will not affect the buoyancy force. In other words, the
increase in the velocity amplitude is only transitory in time: There
is an overshoot phenomenon, nothing more, but this is sufficient
to deduce 
. Figure 12 shows the time evolution for pure ethanol
when at time t=0 the thermostats are switched on. Very quickly
after 1000 s, the steady state is reached with a velocity amplitude
close to 1500 �m/s. There are large fluctuations in the steady
value of the velocity; they can be explained as follows: The gap

Fig. 10 Sketch of the open ended tube „OET… technique for

n the system water „60.88 wt % …
t i
measuring the isothermal diffusion coefficient
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between the two walls is �1.6 mm; the raising column is, there-
fore, 800 �m thick and the velocity raises from zero at the wall to
its maximum amplitude in 400 �m. The size of the optical probe
in LDV is 90 �m which is not very small compared to the num-
bers given above. We understand that inside the optical probe
there are velocity gradients responsible for the fluctuations. Nev-
ertheless an averaging process for t	2000 s gives the velocity
amplitude which can be compared with theoretical predictions, an
easy task for a pure substance. Comparison is excellent. For a
binary mixture, the time evolution of the velocity amplitude is
quite different as shown in Fig. 13 for a mixture of water
�50 wt % � and ethanol �50 wt % �. A steady-state value is ob-
tained after 4000 s, a time larger than for a pure component. There
are still fluctuations due to velocity gradients in the optical probe
as explained before. The steady-state value, a little bit less than
300 �m/s is already reached �due to the thermal effect only� after
500 s, a time comparable to that necessary to reach the steady
value in a one component system; but in the present case, the
velocity continues to increases up to a value close to 380 �m/s,
and next drops to the steady value. In order to find with precision
the maximum value, excluding fluctuations, we use all the points
between t=800 s and t=2000 s, fitted by a cubical polynomial

Fig. 11 Time variation of the logarith
OET

Fig. 12 Time variation of the velocity amplitude in pure

ethanol
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from which by simple derivation we find the maximum value of
the velocity in the least square sense. The relative difference be-
tween the maximum velocity and the steady value is a measure of
the separation ratio, see Eq. �18�, that we call 
exp, an “experi-
mental” value, not the real one.

Va
max − Va

steady st.

Va
steady st. = 
exp 
 = 
exp � ��H/e,Sc,Gr� �18�

In fact in order to find the real value, the experimental value has to
be multiplied by a � corrective factor which accounts for the non-
infinite height of the cell. This correction factor � �greater than
one� tends to 1 when H �or better H /e� goes to infinity. Indeed a
parcel of fluid raising along the hot wall and coming from the
bottom could not have enough time to reach its concentration
equilibrium value at the measuring point �the middle of the col-
umn� if the column is not high enough. Thus the main parameter
in this correction factor is the aspect ratio H /e, but also the relax-
ation time for diffusion linked to D �or to the Schmidt number Sc
in a nondimensional analysis� and the velocity amplitude �or the
Grashof number Gr�. But we believe that in this review paper this
is too much details and interested readers should refer to the origi-
nal paper �27� for tables of � values or to �25� for an empirical

f the mean tube concentration in the

Fig. 13 Time variation of the velocity amplitude in the system
m o
water „50 % …−ethanol „50 % …
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equation. The experiment is not easy due to the small gap between
the walls �1.58 mm� and the difficulty to enter with the laser beam
parallel to the wall. In Fig. 13 we have shown the best result that
we have for water �50 wt % �−ethanol �50 wt % �. Usually the
same experiment is repeated four times for each investigated sys-
tem in order to estimate mean values and standard deviations as
well. Table 2 shows the results obtained during the 4 runs for the
system water �60.88 wt % �−ethanol �39.12 wt % �, a system in-
vestigated by many authors.

A standard deviation of 7% is the best that we could obtain with
4 runs using the overshoot phenomenon in the velocity field, Fig.
13. We compare in Table 3 the two methods: Column 1 gives the
value of DT obtained in a first experiment by the 5 samplings
along the column height, the analysis of the removed samples and
the use of the Furry-Jones-Onsager theory, Eq. �13�. Let us note
that this value is also the average of several runs. Column 2 is the
value of the isothermal diffusion coefficient D by the open ended
tube technique and column 3 gives ST as the ratio of col.1 by
col.2. Column 4 reproduces the value of Table 2 for ST, measuring
by LDV the overshoot in the velocity field. The difference be-
tween the two values is only 3.4%, and we consider that the mean
value of ST=3.23 10−3 K−1 is in some sense the “true” value using
convective coupling.

The comparison with other labs is made in �27� with a lot of
details, but we give it here for convenience in Table 4. The agree-
ment is simply perfect.

3 The Fontainebleau Benchmark
In view of the different techniques exposed in Sec. 2 and of the

results on some water-alcohol mixtures, it seems quite natural to
believe that accurate values of the Soret coefficient can be ob-
tained in earth conditions. The E.G.R.T. �European Group of Re-
search in Thermodiffusion� has initiated a project with the aim to
provide accurate values for the Soret coefficient for some organic
mixtures. During a workshop held at the “Ecole des Mines, Fon-
tainebleau �France�”, five European research groups decided to
provide a benchmark value for the Soret coefficient for specified
mixtures �“The Fontainebleau benchmark”�. The participating
laboratories are from the universities of Bayreuth, Bilbao, Mons,
and Toulouse, and from the Max Planck Institute for Polymer
Research in Mainz. The different techniques were already evoked
in Sec. 2. Bayreuth and Mainz use the TDFRS technique that
allows the simultaneous and independent determination of D, DT,

Table 2 Results for the Soret coefficient based on the over-
shoot phenomenon in the velocity field observed in thermo-
gravitational columns for the system water „60.88 wt % …

−ethanol „39.12 wt % …

Run
Va

max

��m/s�
Va

steady st.

��m/s� 


ST

�10−3 K−1�

1 228 196 0.193 3.00
2 239 202 0.216 3.36
3 235 200 0.207 3.21
4 234 196 0.229 3.56

mean value 0.211 3.28
standard deviation 0.15 0.24
standard deviation 7% 7%

Table 3 Comparison of results for the Soret c
in the velocity field and on the vertical mass fr
the system water „60.88 wt % …−ethanol„39.12

DT�10−12 m2 K−1/s�
from TGC

D�10−10 m2−s�
from OET

ST�10−3 K
�col1/co

1.37 4.32 3.17
Journal of Applied Mechanics
and ST. Bilbao uses the convective coupling in annular thermo-
gravitational columns and by a 2-point sampling process, deter-
mines from the mass fraction difference between top and bottom
of the column, the thermal diffusion coefficient DT. Mons in a first
experiment determines the time dependent velocity amplitude in a
vertical parallelepipedic column �obtained by laser Doppler ve-
locimetry LDV�, next uses the five-point sampling process, and
finally, in isothermal conditions, the open-ended tube technique to
obtain D. In Toulouse, annular thermogravitational columns are
also used, but the space between the two cylinders is filled with a
porous medium, characterized by its porosity � and permeability k
�packed columns�. The Lorenz-Emery theory �33� �a remake of
the Fury-Jones-Onsager theory that replaces the Navier-Stokes
equation by Darcy’s law� is used to deduce DT. Thus in order to
avoid systematic errors, a number of different techniques were
employed. In view of a future comparison of these earth results
with forthcoming space experiments �34� the five labs have cho-
sen to investigate the mixtures which will fly on the ISS �Interna-
tional Space Station�: The three binary mixtures that may be com-
posed with dodecane �C12�, isobutylbenzene �IBB�, and 1,2,3,4
tetrahydronaphtalene �THN� at a mean temperature of 25°C and
50 wt % in each component. These components have been cho-
sen, as they are representative of a hydrocarbon reservoir mixture,
containing �at least when the ternary mixture will be investigated
in a next step� an alkane �C12�, a one-ring component �IBB� and
a two-ring component �THN� �35�. After two years of individual
investigations, comparisons between the results produced by each
laboratory have been completed and the results published in a
common paper accompanied by five individual papers originating
from each lab �15,36–40�. The aim of these papers was to propose
benchmark values �see Table 5� to which all future techniques
should refer. It is our opinion that each new technique, including
microgravity experiments, should reproduce these values before
gaining confidence.

4 Conclusion
Clearly there is no universal technique that works for measur-

ing the Soret coefficient of any binary mixture. Each technique
has its own limitation. As an example, techniques that rely on the
variation of index of refraction n with composition c �beam de-
flection, TDFRS, or simply the analysis of local composition of
removed samples based on the measurement of n� will not work
near a maximum of n, or at best will be very inaccurate. Also one
has to take care of undesired convection currents if the working
equations used for deducing ST from measured quantities are de-
rived for systems at rest. Normally today researchers should be
aware of the stability diagram of binary liquid layers initially at

fficient based on the overshoot phenomenon
ion profile in thermogravitational columns for
% …

ST�10−3 K−1�
from LDV deviation %

�ST��10−3 K−1�
mean value

3.28 3.4 3.23

Table 4 Comparison of the Soret coefficient of the system wa-
ter „60.88 wt % …−ethanol „39.12 wt % … obtained in different
laboratories

Convective
coupling

�21�
Kolodner

�13�
Zhang et al.

�14�
Bou-Ali et al.

�20�

Köhler and
Möller

�24�

3.23�

10−3 K−1
3.32�

10−3 K−1
3.21�

10−3 K−1
3.22�

10−3 K−1
3.25�

10−3 K−1
oe
act
wt

−1�
l2
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rest, modified by the Soret effect, including instability of systems
heated from above, thought to be stable before 1970: This is the
well-known double diffusive convective instability. Also horizon-
tal �lateral� temperature gradients should be avoided in well con-
ducted experiments. Therefore, high resolution laser Doppler ve-
locimetry able to detect velocities down to a few �m/s, should
reveal the presence, or not, of these convective currents. Alterna-
tively the LDV technique can be used to catch as carefully as
possible the onset of free convection in order to measure the
variation of the critical Rayleigh number under the influence of
negative separation ratio, from which ST is deduced. More gener-
ally modification of the buoyancy forces due to the Soret effect �at
least if density is sensitive to the local composition� will pro-
foundly affect the velocity amplitude. Therefore, measurement of
the velocity field is an indirect, but nevertheless not less precise
way to have access to the separation ratio. Once again the limita-
tion is due to the sensitivity of the density to compositional varia-
tion: Even if the components are quite different in their chemical
nature and structure, when their densities are almost equal, buoy-
ancy will not sufficiently change to induce measurable variations
of some velocity components. But one has to remain optimistic:
All these apparent difficulties are exceptional. And in order to
prove that accurate values of the Soret coefficient can be obtained
in earth conditions, five European labs decided to investigate in-
dependently the same systems, i.e., same chemical compounds
from the same batch with the same purity, same composition, and
same temperature. After two years of individual work, the com-
parison of results produced by the different labs showed that this
benchmark campaign was a success: The highest difference from
the mean was only 7% for one particular system. Therefore, we
were able to propose benchmark values and we deny the need
sometimes expressed �17� to go to microgravity for measuring
Soret coefficients, at least for usual organic mixtures near room
temperature. The conclusion could be different for less usual sys-
tems like molten salts or metals at higher temperatures.

Before ending this review paper, we should like to mention a
recent complementary review by Wiegand �41�. In that paper, the
author mainly focused on the optical techniques �rather than on
convective coupling� to investigate the thermal diffusion process
not only in liquid mixtures, but also in polymer solutions and
colloïdal suspensions.
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A Unified Extended
Thermodynamic Description
of Diffusion, Thermo-Diffusion,
Suspensions, and Porous Media
It is shown that extended irreversible thermodynamics (EIT) provides a unified descrip-
tion of a great variety of processes, including matter diffusion, thermo-diffusion, suspen-
sions, and fluid flows in porous media. This is achieved by enlarging the set of classical
variables, as mass, momentum and temperature by the corresponding fluxes of mass,
momentum and heat. For simplicity, we consider only Newtonian fluids and restrict
ourselves to a linear analysis: quadratic and higher order terms in the fluxes are ne-
glected. In the case of diffusion in a binary mixture, the extra flux variable is the diffusion
flux of one the constituents, say the solute. In thermo-diffusion, one adds the heat flux to
the set of variables. The main result of the present approach is that the traditional
equations of Fick, Fourier, Soret, and Dufour are replaced by time-evolution equations
for the matter and heat fluxes, such generalizations are useful in high-frequency pro-
cesses. It is also shown that the analysis can be easily extended to the study of particle
suspensions in fluids and to flows in porous media, when such systems can be viewed as
binary mixtures with a solid and a fluid component. �DOI: 10.1115/1.2131087�
1 Introduction
Nonequilibrium thermodynamics presents several faces; even

though thermostatics, the science of equilibrium, is a unique and
universal theory, this is not so with thermodynamics, whose pur-
pose is the study of nonequilibrium processes. Actually, one can
distinguish at least four main schools in thermodynamics: classi-
cal irreversible thermodynamics �CIT�, rational thermodynamics
�RT�, extended irreversible thermodynamics �EIT�, and
GENERIC �general equation for nonequilibrium reversible irre-
versible coupling�. Rational thermodynamics is a rather formal
and sophisticated theory; it has known some success in the past,
but now it is practically forgotten if one excepts a cluster of irre-
ducible adherents. GENERIC is a rather recent formalism based
on a Hamiltonian formulation of continuum thermomechanics,
there remain indiscretions of youth still to be solved, and this is
why we shall not examine it further in the present paper.

Our purpose is to present a unified description of several pro-
cesses, including diffusion, thermo-diffusion, suspensions, and
porous media in the framework of EIT. However, for pedagogical
reasons, we shall preliminarily recall the main ingredients of CIT
and apply it to the problem of thermo-diffusion in binary mix-
tures. Although CIT has been applied with success to a wide va-
riety of phenomena, it suffers from some shortcomings that will
be analyzed in the forthcoming. These deficiencies have been
eliminated in EIT, which is a formalism that has met a growing
interest during the last two decades and which will constitute the
main part of this work.

The paper will run as follows: after briefly recalling the basic
tenets of CIT in Sec. 2, we discuss in Sec. 3.1 the foundations
underlying EIT. Applications to successive problems as thermo-
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diffusion, suspensions, and porous media are treated in Secs.
3.2–3.4. Since diffusion is a particular case of thermo-diffusion,
we shall not devote special attention to this kind of process. Gen-
eral conclusions and an evaluation of the respective merits of CIT
and EIT are found in Sec. 4.

2 Classical Irreversible Thermodynamics

2.1 General Considerations. Thermostatics is the science de-
scribing homogeneous systems at equilibrium. To cover more gen-
eral and more realistic situations as nonhomogeneous systems un-
dergoing dissipation, one needs new formalisms, presently known
under the name of thermodynamic theories of irreversible pro-
cesses. The first and simplest approach of nonequilibrium is pro-
vided by CIT, which has been developed by Onsager �Nobel Prize
in chemistry 1968� �1�, Prigogine �Nobel Prize in chemistry 1977�
�2�, Meixner �3�, DeGroot and Mazur �4�, among others. The ba-
sic assumption of CIT is the local equilibrium hypothesis. Accord-
ingly, the local and instantaneous relations between thermal and
mechanical properties of a material system are the same as for a
uniform body in equilibrium. As a consequence the set of state
variables are the same as in equilibrium at the condition to express
them locally, which means that they depend explicitly on time t
and position in space x. Another consequence is that all the rela-
tions established in thermostatics, such Gibbs, Gibbs-Duhem, etc.,
relations remain valid when formulated locally. This is important
as it allows us to calculate explicitly the rate of entropy produc-
tion �, defined through the time evolution equation of entropy

�ṡ = − � · Js + � . �1�

In virtue of the second principle of thermodynamics, � is a posi-
tive definite quantity. The other quantities introduced in �1� are:
the mass density �, the specific entropy s, and the entropy flux
vector J, the entropy production term � is referred per unit vol-
ume while an upper dot denotes the material time derivative
d/dt=� /�t+v ·�. It is shown �1–4� that � takes the form of a
bilinear relation in so-called thermodynamic fluxes J� and forces

�
X :
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� = �
�

J�X�. �2�

These fluxes and forces are related by linear laws

J� = �
�

L��X�, �3�

indifferently called phenomenological or constitutive equations,
L�� are the phenomenological coefficients relating the processes �
and �. These coefficients satisfy the celebrated Onsager-Casimir
reciprocity relations �1,4�

L�� = ± L��, �4�

while the coefficients with the same indices are positive �L��

�0� in order to satisfy the positiveness of �. Let us now illustrate
these general considerations with the example of thermo-
diffusion.

2.2 Thermo-Diffusion in a Binary Mixture. For simplicity,
the analysis is restricted to a binary mixture formed by a solute �1�
and a solvent �2�, both constituents are in motion and are assumed
to be incompressible Newtonian fluids. In virtue of the local equi-
librium hypothesis, the basic thermodynamic variables are the
same as in equilibrium, i.e., �, the total mass density �1+�2,
c �=�1 /�� the mass concentration of one of the components, say
the solute, and the specific internal energy u �or the temperature
T�. Of course, this set of variables must be complemented by the
kinetic variable, the barycentric velocity v defined by v= ��1v1
+�2v2� /�. The thermodynamic variables obey the following
Gibbs relation, written in rate form as

ṡ = T −1u̇ + T −1p�1/��· − T −1�ċ , �5�

wherein p designates the pressure and �=�1−�2 the difference of
the chemical potentials. To calculate the rate of entropy produc-
tion, we need the expressions of the evolution equations of the
variables c and u, the mass density remains constant because of
incompressibility �� ·v=0�; they take the form

�ċ = − � · J , �6�

�u̇ = − � · q + � :��v�sym, �7�

wherein J=�1�v1−v� is the diffusion flux of the solute and � the
viscous symmetric stress tensor, superscript sym means the sym-
metric part of the corresponding tensor. By introducing �6� and �7�
in the Gibbs equation �5� and by comparing with the balance Eq.
�1� for s, we are able to derive the explicit expressions for the
entropy flux Js and the entropy production �:

Js = �q − �J�/T , �8�

� = q · �T −1 − J · ���/T� + T −1� :��v�sym, �9�

the latter expression appearing as a bilinear relation in the fluxes
q, J, �, and their conjugated forces �T −1, ��� /T�, ��v�sym. In-
troducing a new heat flux

q� = q − �h1 − h2�J , �10�

where hk �=uk+ p /�k� is the specific enthalpy of constituent k and
making use of the result

T � �T −1�k� = − hkT
−1 � T + ���k�T, �11�

where subscript T refers to a quantity evaluated at constant tem-
perature, it is found that �9� takes the form

T� = − q� ·
�T

T
− �11J ·

�c

c
+ � :��v�sym, �12�

with �11=��1 /�c. Invoking Curie’s principle �4�, which forbids
coupling between fluxes and forces of different tensorial orders,

expression �12� suggests the following flux-force relations:

Journal of Applied Mechanics
q� = − � � T −
��11T

c
DF � c , �13�

J = − �DT � T − �D � c , �14�

� = 	��v�sym, �15�
wherein we have introduced the usual transport coefficients;
namely, the coefficient of diffusion D, the Dufour coefficient DF,
the thermal diffusion coefficient DT, and the dynamic shear vis-
cosity 	. Positivity of � implies that ��0, D�0, 	�0, whereas
from Onsager’s reciprocity property, it is deduced that

DF = DT. �16�
This equality was first established by Stefan at the end of the 19th
century and widely confirmed theoretically and experimentally
during the 20th century. The results �13� and �14� reflect the well-
known properties of Dufour and Soret effects and can be directly
generalized to the case of a n-component mixture. In absence of
coupling, �13� and �14� reduce to the classical laws of Fourier and
Fick respectively:

q = − � � T �Fourier�, J = − �D � c �Fick� . �17�

2.3 Shortcomings of CIT. Despite its successes, CIT pre-
sents several shortcomings that are now briefly discussed. First of
all, it should be realized that CIT is in contradiction with the
principle of causality demanding that an effect be perceived after
the application of a cause. In CIT, the field equations take the
form of a set of parabolic partial differential equations with the
consequence that any perturbation will be felt instantaneously and
everywhere inside the system. Indeed going back to Fourier’s �or
Fick’s� law, it is directly seen that any temperature �or concentra-
tion� gradient gives rise instantaneously to a heat �or mass� flux
throughout the whole system, from which follows that cause and
effect are simultaneous, in opposition with causality requirement.

Second, CIT is a linear theory in fluxes and forces. Therefore, it
is only applicable in the close vicinity of equilibrium and cannot
be generalized to nonlinear situations as polymers, non-
Newtonian fluids, or shock waves. Third, the validity of the On-
sager relations has been acridly contested mainly by the RT
school, indeed there is no explicit demonstration of the validity of
the reciprocity relations at the macroscopic level; the only
pseudodemonstration that is available rests on pure microscopic
considerations and has also been the subject of severe criticisms.
These are the main reasons that have prompted people to propose
other formalisms. EIT, which is one of them, will be presented in
the next section.

3 Extended Irreversible Thermodynamics (EIT)

3.1 Generalities. The basic idea in EIT is to extend the space
of state variables by including the dissipative fluxes among the set
of variables. Denoting by C the ensemble of classical variables
and by F the flux variables, the space of state variables will be
formed by the union of C and F:

V = C � F . �18�
In addition, it is postulated that there exists a nonequilibrium en-
tropy that is a function of the whole set of variables �i.e., s
=s�V��, it is worthwhile to stress that by doing so, we go beyond
the local equilibrium hypothesis of CIT which implied that s
=s�C�. To fulfil the requirement placed by second law of thermo-
dynamics, it is admitted that the rate of entropy production � is
never negative: �
0.

The behavior in the course of time and in space of the classical
variables C is well known as it is governed by the classical bal-
ance equations of mass, momentum and energy. The open prob-
lem in EIT is to derive the time evolution equations for the flux

variables F: several approaches have been proposed �5,6� that are
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either inspired by the method followed in CIT to obtain the phe-
nomenological relations or by more general and sophisticated pro-
cedures as utilized in rational thermodynamics. Here, for the sake
of uniformity, we have decided in favor of the technique used in
CIT. Of course, these evolution equations for the flux variables
cannot take any arbitrary form as they are subject to the restric-
tions placed by the second law and the general axioms of thermo-
mechanics.

3.2 Thermo-diffusion in Binary Mixtures. As in Sec. 2, we
shall consider diffusion in a mixture of two incompressible New-
tonian fluids subject to a temperature gradient. The space of basic
variables is formed by the union of the space C of classical vari-
ables �mass concentration c of one of the constituents, internal
energy u �or temperature T�, plus eventually the barycentric ve-
locity v� and the space F of the flux variables, here the flux of
diffusion J and the heat flux q�. The corresponding Gibbs equa-
tion will take the form

ṡ = T −1u̇ − T −1�ċ +
�

�T
J · J̇ +

�

�T
q� · q̇� �19�

wherein, for simplicity, it has been assumed that �s /�J
= �� /�T�J, �s /�q�= �� /�T�q� where � and � are unknown phe-
nomenological coefficients allowed to depend on c and T, cou-
pling and nonlinear terms in the fluxes are neglected. To calculate
the entropy flux and the entropy production, we follow the same
procedure as in Sec. 2. We substitute the evolution equations of c
and u in the above Gibbs relation and compare with the general
evolution equation �1� of s, it is then found that the entropy flux is
still given by its classical expression �8�, while the entropy pro-
duction reads as

T� = − J · ��11

c
� c + �J̇� − q� · ��T

T
+ �q̇�� + � :��v�sym.

�20�

It is interesting to observe that the above relation is a bilinear
expression in generalized fluxes and forces, the latter being the
quantities appearing between brackets. Assuming linear flux-
forces relations, one recovers at once Newton’s law �15� between
the stress and the symmetric velocity gradient tensors plus the
missing evolution equations of q� and J, that can be given the
form

J̇ +
1

���
J = −

�11

�c
� c +

�

�
q�, �21�

q̇� +
1

�T
q� = −

1

�T
� T +

�

�
J , �22�

wherein , �, �, and � are four supplementary phenomenological
coefficients. In the case of time-independent processes, expres-
sions �21� and �22� reduce to Dufour and Soret relations �13� and
�14�. This comparison is interesting as it allows us to identify the
supplementary unknown coefficients introduced in �21� and �22�.
It is easily found that

 = � −
�T�11

c

DFDT

D
, � =

�11

c

DF

D
,

�23�

� =
c

�11
D − T

DFDT

�
, � =

DT

��
.

The two remaining coefficients � and � are related to the relax-
ation times �J and �q corresponding to the heat and mass fluxes
respectively; indeed, referring to �21� and �22� these relaxation

times are given, respectively, by
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�J = ���, �q = �T . �24�

If these relaxation times can be determined either theoretically or
experimentally, the above relations provide a direct means to
evaluate � and �.

It should also be observed that within a more general context,
expressions �21� and �22� may contain extra contributions of the
form ��J and ��q, which do not contribute to the entropy
production and represent so-called “gyroscopic” or “lift” forces.

In absence of coupling between thermal and matter transports,
Eqs. �21� and �22� take the form of Cattaneo relations �7�:

�JJ̇ + J = − �D � c , �25�

�qq̇ + q = − � � T , �26�

which play an important role in high-frequency phenomena. It is
true that the relaxation times �J and �q are generally very small in
ordinary fluids and in homogeneous materials �of the order of the
time between two successive collisions in gases� and are therefore
negligible in a great majority of applications. For polymer solu-
tions and nonhomogeneous materials as organic tissues they can
be relatively large of the order of 1 to 100 sec. Equations of the
form �21� and �22� or �25� and �26� are also useful in the descrip-
tion of suspensions and porous media, as briefly described in the
forthcoming.

3.3 Suspensions. In the case of suspensions of solid rigid
particles in a fluid at uniform temperature, a good choice for the
extra flux variable is the particle diffusion flux J=�c�1−c��vp

−v f� where c is the particle’s mass fraction and indices p and f
refer to the particles and the fluid, respectively. By following the
same procedure as above, it has been shown that J obeys a time-
evolution equation of the form �8�

J̇ +
J

�J
= − � � � + � � · � + � � · �* + O�J · J� , �27�

where �, �, � are phenomenological coefficients, the second-order
tensors � and �* designate two viscous stress tensors; the first is
related to the global convective motion and the second one to the
relative motion of the particles and are given �8� by the following
constitutive relations:

� = 	���v + �J��sym, �28�

�* = 	*����J��sym, �29�

with 	 and 	* two positive viscosity coefficients. Equation �28� is
a generalization of Newton’s law in presence of suspensions
whereas �29� is typical of systems with suspensions. When non-
linear effects are taken into consideration, expression �27� be-
comes much more complicated �8� and the physical interpretation
of the various phenomenological coefficients is a tedious task. To
clarify their meaning, EIT is of no help and one must address to
other theories like the kinetic theory or the internal variable theory
�9�. In the case that coefficients � and � vanish, evolution equation
�27� boils down to Cattaneo relation �25�.

3.4 Porous Media. It is not unusual to model fluid motion
through porous media as a binary system whose respective com-
ponents are the fluid and the solid porous matrix, the latter being
generally assumed to be rigid and at rest, so that its velocity vs
=0. As a flux variable, it is then rather natural to select the fluid
diffusion flux J=� f�v f −v�. Following the same procedure as in
the previous sections, it is easily shown �10� that J obeys an
evolution equation of the form

J̇ = −
�D

�J
� c −

1

�J
J , �30�

where D is a diffusion coefficient and �J a relaxation time, non-

linear terms and thermal effects have been omitted. From the defi-
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nition of J and making use of the momentum equation

�v̇ = − �p + � · � + �F , �31�

with � the viscous stress tensor and F the body force per unit
mass, expression �30� will read as

�̇ f�v f − v f� + � fv̇ f −
� f

�
�− �p + � · � + �F� = −

�D

�J
� c −

� f

�J
�v f − v� .

�32�

Introducing Newton’s law and the result v f −v= ��s /��v f in �32�
leads to

� fv̇ f = −
� f

�
� p −

� f

�
	�2v + � fF −

�s� f

��J
v f , �33�

where 	 is the dynamic viscosity of the fluid and where the term
involving the diffusion coefficient has been omitted as it is gen-
erally negligible. Let us now introduce the permeability K of the
porous medium and the effective viscosity 	eff defined respec-
tively as

K =
�J�	

�s
, 	eff =

� f	

��
, �34�

where � designates the porosity of the medium; i.e., the ratio of
the volume occupied by the fluid and the total volume. With this
notation, Eq. �33� reads as

�v̇ f = − �p −
	

K
u + 	eff�

2u + �F , �35�

wherein u=�v f is the seepage velocity. In absence of body forces
and under stationary conditions, one recovers the Brinkman
relation

− �p −
	

K
u + 	eff�

2u = 0. �36�

It is clear that �36� reduces to Navier-Stokes equation for K→�
and to Darcy’s relation

�p = −
	

K
u �37�

for K /L2�1, where L is a reference length scale. It follows from
the above considerations that Darcy and Brinkman relations are
particular cases of the evolution equation for the diffusion flux.
Darcy’s law is generally selected when the volume of the solid
particles is larger than the volume occupied by the fluid; other-
wise, Brinkman’s law is preferred. It is also interesting to recall
that �J is of the order of the collision time between particles; i.e.,
10−8 to 10−13 s. Identification �34� indicates that the permeability
K will be of the same of order of magnitude, and this is indeed
confirmed by experimental observations.

4 Conclusions
The aim of this paper is to convince the reader that extended

irreversible thermodynamics �EIT� provides a valuable tool for
studying a large variety of macroscopic processes. In the present
work, four different situations have been analyzed: diffusion in
binary systems, thermo-diffusion, suspensions, and flows through
porous media. The central role played by the diffusion flux has
been emphasized, it has in particular been shown that most of the
relevant results in �thermo�diffusion, suspensions and porous me-
dia are derivable from one single relation: the time evolution
equation of the mass flux. Such results attest of the simplicity and
the universality of EIT.

When comparing EIT with CIT, the classical theory of irrevers-
ible processes �1–4�, the following statements are worth pointing
out.
�i� The phenomenological relations obtained in CIT �for in-
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stance, the Soret and Dufour expressions�, are in EIT re-
placed by evolution equations for the mass and heat fluxes.
EIT may be considered as a natural extension of CIT that
is recovered when the relaxation times are going to zero.

�ii� In CIT, the differential field equations are parabolic,
whereas they are hyperbolic in EIT. The consequence is
that the application of an arbitrary disturbance will result
in a signal propagating at infinite velocity in CIT but at
finite velocity in EIT. This is important because, in con-
trast with CIT, EIT is in full agreement with the principle
of causality requiring that any effect will be felt after the
application of the cause; in CIT, cause and effect are si-
multaneous.

�iii� Because of the axiom of local equilibrium, the range of
applications of CIT is restricted to linear and local pro-
cesses, strictly speaking CIT is applicable to situations
close to equilibrium. Such a constraint is not applicable to
EIT, which encompasses nonlinear and nonlocal processes
as it eliminates the local equilibrium hypothesis.

�iv� It can be argued that one shortcoming of EIT is the pres-
ence of a rather large number of phenomenological coef-
ficients. However as shown in Sec. 3.2, such a difficulty
can be circumvented by comparing with experimental data
and/or other theories, such as kinetic theory or statistical
mechanics.

To summarize, it can be claimed that that main characteristics of
EIT are simplicity and universality. The basic idea is to enlarge
the space of variables by including the fluxes; the latter are well
defined as they are the dissipative parts of the fluxes appearing in
the classical balance equations. In some problems involving
strong nonlocality, it may be necessary to introduce higher-order
fluxes like the flux of the fluxes �5�, but this does not generate
fundamental difficulties. Universality of EIT has been proved
though the large amount of applications treated during the two last
decades and for which the present analysis provides only a re-
stricted partial sample.

Acknowledgment
Support from ESA through PRODEX VII and CIMEX II

projects is acknowledged.

Nomenclature
D � diffusion coefficient, m2 s−1

DF � Dufour diffusion coefficient, m2 s−1 K−1

DT � Soret or thermal diffusion coefficient,
m2 s−1 K−1

J � diffusion flux, kg m−2 s−1

Js � entropy flux, W m−2 s−1

K � permeability, m2

T � temperature, K
c � mass concentration
h � specific enthalpy, J kg−1

p � pressure, N m−2

q � heat flux, W m−2

s � specific entropy, J kg−1 K−1

u � specific internal energy, J. kg−1

u � seepage velocity, m s−1

v � velocity field, m s−1

Greek symbols
 � phenomenological coefficient

� ,�, �, � ,� � phenomenological coefficients
� � porosity
	 � viscosity coefficient, N s m−2

� � heat conductivity, W m−1 K−1

� � chemical potential, J kg−1
� � phenomenological coefficient
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� � mass density, kg m−3

� � phenomenological coefficient
� � rate of entropy production per unit volume,

W K−1 m−3

� � stress tensor, N m−2

� j, �q � relaxation times, s
�, � � phenomenological coefficients

Subscripts
eff � effective

f � fluid
s � solid

Superscripts
˙ �upper dot� � time derivative

sym � symmetric part of a tensor
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Numerical Analysis of
Thermal-Solutal Convection in
Heterogeneous Porous Media
Thermal diffusion, or Soret effect, in porous media is mathematically modeled with the
Firoozabadi model based on non-equilibrium thermodynamics. The Soret effect in a
binary mixture is investigated in a vertical cavity with heterogeneous permeability, where
natural convection can occur. The thermo solutal convection with heterogeneous perme-
ability was studied in terms of flow pattern, concentration distribution, component sepa-
ration ratio, and Soret coefficient distribution. A consistent analysis was conducted and it
is concluded that the Soret coefficient of thermal diffusion in porous media strongly
depends on the heterogeneity of permeability. �DOI: 10.1115/1.1992515�
1 Introduction
During a thermal diffusion process, a composition gradient will

be built up in a previously uniform mixture when a temperature
gradient is applied. This thermal diffusion effect is named the
Ludwig–Soret effect, or Soret effect �1�, and the ratio of the ther-
mal diffusion coefficient to the molecular diffusion coefficient is
known as the Soret coefficient. Researchers �2–4� have contrib-
uted to theoretical developments related to the calculation of the
molecular, thermal and pressure diffusion coefficients. Among
them, Shukla and Firoozabadi �2�, Riley and Firoozabadi �5� and
Ghorayeb et al. �6–8�, using the irreversible thermodynamics
theory, were able to extend the theoretical simulation of the Soret
effect based on De Groot’s non-equilibrium thermodynamics �9�
to multicomponent systems. The significant advantage of this ap-
proach is that the Soret coefficient is calculated at each point of
the cavity grid as a function of temperature, pressure, and compo-
sitions of the system. Compared with other theoretical approaches,
such as Rutherford and Roof �10�, the theoretical prediction of
this approach is much closer to experimental data, especially for
non-ideal mixtures, such as hydrocarbon mixtures �11�.

The transport phenomenon in porous media is an important
research topic and intensive studies have been continuously con-
ducted on it. The complicated and heterogeneous properties of
porous media bring challenges to researchers, who are interested
in different characters of the transport phenomena in porous me-
dia. There are a large number of published papers studying the
effect of heterogeneity in porous media. Ingham �12� discussed
the viscosity effect on Darcy Law from a mathematical approach,
and Storesletten �13� investigated the impact of heterogeneous
permeability of porous media on convection flow and detailed the
convection flow characteristics with respect to different perme-
ability ratios. Saghir and Islam �14� studied the effect of convec-
tion in a dual-permeability and dual-porosity porous cavity.

However, all these papers are focused on the fluid mechanics
issues and no thermal diffusion has been taken into account, even
if mass diffusion process was considered in some papers. In par-
allel, there are a few research papers contributing to thermal dif-
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fusion with convection flow in porous media. Jacqmin �15� con-
cluded the convection effect on mass transfer would be balanced
by the compositional variation through a perturbation analysis.
Riley and Firoozabadi �5� studied the Soret effect on natural con-
vection in a rectangular reservoir with homogeneous permeability.
Benano-Melly et al. �16� examined the Soret effect in binary mix-
tures with lateral heating. They assumed a constant Soret coeffi-
cient in their entire numerical analysis. Their numerical results
indicate a multiple convection roll flow pattern depending on the
Soret coefficient value and their experimentally measured thermal
diffusion coefficient was used in their numerical model. Jiang et
al. �17� analyzed the permeability effect on the thermal diffusion
process and showed that there existed an optimum permeability in
porous media providing maximum separation ratio in a combined
thermal diffusion and convection process, which is consistent with
the results reported by many researchers. But in each case, the
homogeneous permeability was assumed. Ingham and Pop �18,19�
have conducted extensive research on the transport phenomena in
porous media, Nield and Bejan �20� contributed to convection
investigation in porous media significantly, and Vafai �21� pro-
vided a comprehensive handbook for researchers in a porous me-
dia field.

This work investigates numerically the thermal diffusion phe-
nomena in a heterogeneous porous cavity, which is laterally
heated and filled with a binary mixture of methane and n-butane.
The thermal diffusion process, as well as the concentration distri-
bution and the separation ratio due to a temperature gradient and
natural convection flow, were investigated. In the analysis, the
streamlines of flow in heterogeneous porous media, the concen-
tration distribution over the entire cavity, and the vertical distri-
butions of the Soret coefficient along the center of the porous
medium cavity have been analyzed to study the Soret effect in a
heterogeneous porous medium. The separation ratio has also been
used as a variable to investigate the effect of the Soret effect on
convection flow as the permeability ratio of the porous medium
varies. All results show consistent phenomena, and with the sepa-
ration ratio, the effect of the convection flow on thermal diffusion
has been clearly presented �22,23�. The significant point in this
paper is that not only the Soret effect is investigated in a hetero-
geneous porous medium but also the Soret coefficient has not
been fixed as constant in the computational domain but rather
calculated at each point of the grid as a function of the tempera-

ture, pressure and the composition of the fluid mixture.
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2 System Modeling
In a binary mixture, the diffusion mass flux of component 1 is

formed based on three driving forces, the composition gradient,
the temperature gradient, and the pressure gradient, and can be
written in the following formula:

J1 = − ��Dm � x1 + DT � T + DP � P� , �1�

where � is the mass density of the fluid mixture, kg/m3; x1 is the
mole fraction of the specified component 1 in the binary mixture,
nondimensional; T is temperature, K; P is pressure, N/m2; and
Dm, DT, and Dp are the molecular, thermal, and pressure diffusion
coefficients in m2/s, m2/s /K, and m3 s /kg, respectively; and J1 is
the mass flux of the solute, methane, in kg/m2/s.

The ratio between thermal diffusion coefficient and the mol-
ecule diffusion coefficient is called Soret coefficient

St =
DT

Dmx1�1 − x1�
�2�

Based on non-equilibrium thermodynamics theory, the Soret
coefficient can be described in the following formula:

St =
Q2

* − Q1
*

Tx1
��1

�x1

�3�

where T is temperature, K, x1 is the mole fraction of component 1,
�1 is the molar chemical potential of component 1, J/mol, Qi

* is
the net heat transport of component i, J/mol, i=1,2.

In the Firoozabadi model, the net heat transport is modeled as:

Qi
* =

Ui

�i
− ��

j=1

n
xjUj

� j
� Vi

�
j=1

n

xjVj

, i = 1,2;n = 2 �4�

where Ui is the molar internal energy of component i, J/mol Vi is
the molar volume of component i, m3/mol, xj is the mole fraction,
and �i is the ratio of the energy of viscous flow and the energy of
vaporization. For hydrocarbon components, the value of �i is set
to be constant 4.0 �2�

In Haase’s model, the net heat transport is interpolated with the
molar enthalpy in a mass conserved system. With this assumption,
the net heat transport is expressed in the following format:

Q2
* − Q1

* = �M1

M
H2 −

M2

M
H1� �5�

where Hi is the partial molar enthalpy of component i, J/mol and
Mi is the molecule weight of component i, M is the molecule
weight of the mixture, M =x1M1+x2M2.

In the Kempers model, the net heat transport is described with
molar volume and enthalpy

Q2
* − Q1

* = �V1

V
H2 −

V2

V
H1� �6�

where Vi is the partial molar volume of component i, m3/mol and
V is the molar volume of the mixture, v=x1V1+x2V2.

The Firoozabadi model has shown good performance in pre-
dicting Soret coefficient in hydrocarbon mixtures �2�, and it is
applied in this paper for the numerical simulation of thermal dif-
fusion in a rectangular porous cavity.

A porous cavity of height H and width L is shown in Fig. 1 with
specified boundary conditions. The upper part and lower part are
assigned different values of permeability, �1 and �2, respectively,
with �2 set to be 10 md �1 md=9.87�10−15 m2� and �1 varying
over a wide range. The parameters in the model are given in Table
1. The thermal diffusion phenomenon in this heterogeneous po-
rous medium is modeled with the following mathematical equa-

tions.
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The continuity equations are given below:

��

�t
+ � · ��V� = 0 �7�

���x1�
�t

+ � · ��x1V� = − � · J1 �8�

where � is the mass density of the fluid mixture, kg/m3; t is time,
s; V=ui+vj is the velocity vector, and u and v are the horizontal
and vertical velocity components, m/s; x1 is the mole fraction of
the specified component 1, methane, in the binary mixture, non-
dimensional; and J1 is the mass flux of the solute, as shown in Eq.
�1�.

The momentum conservation equation is simplified by using
Darcy’s Law in porous media

V = −
�

��
��P + �g� �9�

where g is the gravitational acceleration vector, m/s2; �, �, and �
are the permeability, the dynamic viscosity, and the porosity, re-
spectively. The unit of � is m2, the unit of � is Pa/s, and � is
nondimensional.

Practically, the momentum equation used in the numerical
simulation is obtained by substituting Eq. �9� into the mass con-
servation equation given by Eq. �7�, and solving for pressure.

The energy conservation equation is expressed as follows:

����Cp�eT�
�t

+ V · ����Cp� fT� = ke�
2T �10�

where ��Cp� f is the volumetric heat capacity of fluid mixture,
J /m3/K; ke=�kf + �1−��kp is the effective thermal conductivity
of the system, W/m/K; and ��Cp�e=���Cp� f + �1−����Cp�p is the
effective volumetric heat capacity of the system, J /m3/K.

The two lateral walls of the cavity have constant temperatures,
Th=344 K and Tc=334 K, respectively. All the walls are assumed
rigid. At initial point, the binary mixture inside the cavity consists
of 20% methane �CH4� and 80% n-butane �nC4H10� uniformly,
maintained under a pressure of 11.14 MPa and a linear tempera-
ture distribution in x direction with Tc=334 K and Th=344 K.
The result was obtained when the system reaches steady state in a
time process. The Peng–Robinson equation of state �24� is applied
to calculate the density of mixture, as well as other fluid proper-
ties. The flow is considered to be compressible, and the properties
of the liquid, such as the density and viscosity, are functions of the
temperature, pressure and the fluid mixture composition. The cal-
culation of viscosity is referred to the model introduced by Hern-
ing and Zipperer �25�, and the estimation of molecule diffusion

Fig. 1 Two-dimensional porous media domain and boundary
conditions
coefficient Dm is based on the model proposed by Taylor �26�.
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3 Results and Discussion
In the vertical porous cavity, the permeability of the lower part

is set to be 10 md and kept constant, however, the permeability of
the upper part is varied from 0.001 to 10000 md. The permeabil-
ity ratios chosen in this study are 0.001/10, 0.1/10, 1 /10, 10/10,
100/10, and 10,000/10, which cover a wide range.

The streamlines in the cavity for each heterogeneous permeabil-
ity case corresponding to a different permeability ratio are shown
in Figs. 2�a�–2�f�. It is noticed that when the permeability ratios
are 0.001/10 and 0.1/10, there is no streamline in the upper part
of the cavity compared to the well developed convection flow in
the lower part of the cavity. This is due to the lower permeability
in the upper part. Actually, there is convection flow in the upper
part in both cases. However, the flow is so weak compared to the
flow in the lower part that it is negligible as shown in Figs. 2�a�
and 2�b�. In Fig. 2�c�, the streamlines appear in the upper part
with a permeability ratio 1/10. The convection flow in the upper
part is not as strong as in the lower part. However, the effect on
thermal diffusion is significant, which is discussed later.

With the permeability ratio equal to 10/10, convection is de-
veloped in the whole cavity as shown in Fig. 2�d�. When the
permeability in the upper part increases to 100 and 10,000 md, the
flow in the upper part dominates. Noticeably, the convection in the
lower part still maintains the formal pattern except for the inter-
face area as shown in Figs. 2�e� and 2�f�.

From the streamlines of the convection pattern for different
permeability ratio cases, the heterogeneity of porous medium can
be said to have a strong effect on convection pattern.

Table 1 Parameters

Width L of the cavity
Height H of the cavity
Characteristic Length, Lc=�L2+H2

Fluid mixture composition
Fluid specific heat, �Cp� f

Fluid thermal conductivity, kf

Porosity, �
Permeability, �2

Specific heat of porous medium, �Cp�p

Thermal conductivity of porous medium, kp

Density of porous medium, �p

Reference temperature, T0

Lateral wall temperature difference, Th−Tc

Reference pressure, P0

Fig. 2 Convection streamlines in the heterogeneous porous

cavity

Journal of Applied Mechanics
It is significant that when the value of permeability in the upper
part of the cavity is smaller than the value of permeability at the
lower part, convection in the lower part dominates, and this can be
observed from the flow in the interface area when �1 varies from
0.001 to 0.1 md, and then to 1 md. When �1 is larger than �2, the
convection flow at the upper part dominates and the flow pattern
of the lower part is distorted at the interface area.

In Figs. 3�a�–3�f�, the mole fraction distribution, usually called
concentration distribution in literatures, inside the porous cavity is
shown corresponding to the given permeability ratio. For all
cases, the concentration distribution can be divided into two re-
gions, the upper part and the lower part. According to different
values of the permeability in the upper part, the concentration
distribution varies drastically, however, in the lower part, the con-
centration distribution keeps the same pattern approximately. This
behavior is consistent with the convection flow patterns, as shown
in Figs. 2�a�–2�f�. When the permeability is 0.001 or 0.1 md in the
upper part, the concentration distribution in the upper part is given
by vertical lines, which are generated for a thermal diffusion pro-
cess with negligible convection flow. However, when the perme-
ability is 1 md in the upper part, the concentration distribution
lines tilt to about 45 deg, which is caused by the effect of convec-
tion flow as shown in Fig. 2�c�. With 10 md permeability, the
same as the lower part, the concentration distribution shows flat
lines and the separation ratio reaches the maximum value, which
was discussed in detail in Ref. �27�. As the value of upper perme-
ability becomes larger, 100 and 10,000 md, than the value in the
lower part, the strong convection flow in the upper part disturbs

the physical model

0.5 m
5.0 m

5.025 m
CH4�20% �+nC4H10�80% �

2746.42 J /kg/K
0.095 J /m/s /K

0.20
10−3, 0.1, 1, 10, 100, 104 md

1840.0 J /kg/K
1.0 J /m/s /K
2050.0 kg/m3

339 K
10°C

11.14 MPa

Fig. 3 Mole fraction of component 1 distribution in the hetero-
of
geneous porous cavity
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the separation of components in the binary mixture. When the
permeability of the upper part is 10,000 md, the strong convection
flow in the upper part mixes up the whole upper part. However,
the lower part is still identifiable with well established separation.

The concentration distribution in the lower part of the cavity
does not change much with different permeability values in the
upper part. However, from the concentration distribution at the
interface area, one can observe that the lower part dominates
when �1 is smaller than �2, as shown in Figs. 3�a�–3�c�, and the
upper part dominates when �1 is larger than �2, as shown in Figs.
3�e� and 3�f�.

The separation ratio is defined as

q =
xh/�1 − xh�
xc/�1 − xc�

�11�

where xh and xc are the maximum and minimum methane mole
fraction at the hot and cold walls, respectively.

The variation of separation ratio, q, with different permeability
in the upper part of the heterogeneous porous medium, is shown
in Fig. 4, and compared to the separation ratio for the homoge-
neous case, for which the whole cavity is specified to have the
same permeability.

The two curves meet at the 10 md point, which should happen
as both are with identical specifications. It is important to point
out that the separation ratio in heterogeneous porous media is
always higher than that in the homogeneous porous media due to
the heterogeneous condition of the problem. The higher separation
ratio in heterogeneous porous media is of physical and practical
interest in the research on thermal diffusion.

In heterogeneous porous media, the Soret coefficient, St, will be
affected by the region-dependent convection flow. In order to in-
vestigate this effect, the Soret coefficient distribution along the
central vertical line in the porous cavity is shown in Fig. 5. Cor-
responding to different values of permeability in the upper part of
the cavity, the Soret coefficient changes dramatically in the upper
part of the centerline and the effect of convection flow can be
identified clearly. When the value of permeability is 0.001 md, the
Soret coefficient distribution in the upper part is a vertical line,
corresponding to very weak convection flow in the upper part.
Similar behavior can be seen with 0.1 md permeability in the
upper part. At 1 md permeability, the Soret coefficient distribution
tilts in accordance with noticeable convection flow in the upper
part. With 10 md permeability in the upper part, the Soret coeffi-
cient distribution reaches the maximum variation. When the per-

Fig. 4 Component separation ratio in the heterogeneous po-
rous cavity
meability in the upper part increases to 100 md, the Soret coeffi-
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cient distribution returns back close to a vertical line with slight
distortion at the interface due to stronger convection flow in the
upper part. With the permeability of 10,000 md in the upper part,
the Soret coefficient distribution in the upper part along the cen-
terline changes its pattern completely, which is the result of strong
convection flow. Although the Soret coefficient in the upper part
varies dramatically for different permeability values, the Soret co-
efficient distribution in the lower part remains the same with slight
changes. Therefore, the thermal diffusion in the lower part of the
heterogeneous porous cavity has been preserved and the relatively
larger separation ratio shown in Fig. 4 is mainly due to the thermal
diffusion in the lower part of the cavity, or the heterogeneity of the
porous media.

Observing the Soret coefficient distribution near the interface,
where the effect of difference in permeability appears, one can
conclude that the Soret coefficient distribution in the lower part of
the cavity does not change when �1 is smaller than �2, and varies
slightly when �1 is larger than �2. This observation is consistent
with both the convection flow pattern shown in Fig. 2, and the
concentration distribution shown in Fig. 3.

4 Conclusions
The significance of heterogeneous porous media on thermal dif-

fusion, or the Soret effect, in a vertical porous medium was inves-
tigated with specified permeability ratios 0.001/10, 0.1/10, 1 /10,
10/10, 100/10, and 10,000/10. The Soret effect varies drastically
in the upper part of the porous cavity in accordance with the
variation in permeability. But the Soret effect in the lower part of
the porous cavity, where a fixed permeability is specified, is pre-
served, even with the strong convection flow existing in the upper
part, which ruins any Soret effect and mixes the components up in
the upper part of the porous cavity. A significantly higher separa-
tion ratio is obtained compared to the homogeneous permeability
case. The effect of the Soret coefficient given in this paper is
consistent with the effect of permeability ratio in a heterogeneous
porous cavity on the predicted convection pattern, concentration
distribution, and separation ratio variation.
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Natural Convection of a
Two-Component Fluid in Porous
Media Bounded by Tall
Concentric Vertical Cylinders
This paper reports an analytical and numerical study of the behavior of a binary mixture
saturating a vertical annular porous medium. Uniform heat fluxes are applied to the
vertical walls while the horizontal walls are impermeable and adiabatic. Solutal gradi-
ents are assumed to be induced either by the imposition of constant gradients of concen-
tration on the vertical walls (double diffusive convection, a=0) or by the Soret effect
(a=1). Governing parameters of the problem under study are the thermal Rayleigh RT,
buoyancy ratio �, Lewis number Le, aspect ratio A, constant a, and curvature �. An
analytical solution, valid for tall enclosures (A�1), is derived on the basis of the parallel
flow approximation. In the range of the governing parameters considered in this study, a
good agreement is found between the analytical predictions and the numerical results
obtained by solving the full governing equations. For large Rayleigh numbers (RT�1),
an approximate solution valid in the limit of the boundary layer regime is
obtained. �DOI: 10.1115/1.1993666�
1 Introduction
The phenomenon of natural convection, induced by two sources

of buoyancy, through porous media has been recently studied ex-
tensively due to its importance in many natural and industrial
problems �see for instance �1–3��. Available studies on this phe-
nomenon can be classified into two types of problems in regard to
the solutal contribution to the total buoyancy force induced by the
thermal and solutal gradients. In the first type of problem, called
double diffusive convection, the solutal field results from the im-
position of given solutal boundary conditions on the system. In
the second type of problem, called Soret induced convection, the
solutal gradients are due to the thermal diffusion in a binary mix-
ture, initially homogeneous. In both cases, the dynamic of heat
and mass transfer can be very different from those driven by the
temperature field alone.

A review of the literature concerning natural convection due to
combined buoyancy forces indicates that most of the existing
studies on this topic are concerned with the case of a vertical
cavity subject to horizontal temperature and concentration gradi-
ents. Thus, analytical and numerical results have been reported for
this configuration for both double diffusive convection �4,5�, and
Soret induced convection �6–8�. A few studies have also been
concerned with the case of columns �9� and vertical annulus �10�.
The results obtained in these investigations show that, depending
on the governing parameters of the problem and in particular on
the solutal to thermal buoyancy ratio �, various modes of convec-
tion are possible. In particular, the flows driven by opposing ther-
mal and solutal buoyancy forces ���0� were observed to be con-
siderably more complex than those driven by aiding buoyancy
forces ���0�. For instance a purely diffusive state is possible for
the special situation where the buoyancy forces induced by the
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thermal and solutal effects are opposing each other and of equal
intensity ��=−1�. The onset of convection was investigated in
�11–14� for the case of double diffusive convection and in �7,15�
for Soret induced convection. The existence of oscillating flows,
in the case of opposing fluxes of heat and mass ���0�, was
demonstrated numerically in �5,16� among others. The ranges in
parametric values necessary to make convection oscillatory were
investigated by these authors. Also for opposing forces, the exis-
tence of multiple solutions has been demonstrated analytically in
�17�. The transition between aiding and opposing double-diffusive
flows in a vertical porous cavity has been investigated numerically
and analytically in �18�. It was demonstrated that two types of
solutions exist in which thermal and solutal buoyancy forces op-
pose each other and are of comparable intensity. Also, an analyti-
cal solution was developed in �19� for boundary layer flows in a
vertical layer, induced by opposing buoyancy forces. It was shown
that the resulting boundary layer regimes are extremely different
from those found in the previous studies for the case of aiding
buoyancy forces.

This paper reports an analytical and numerical study of natural
convection through a binary fluid saturating a vertical porous an-
nulus. Both problems of double diffusive and Soret induced con-
vection are investigated. In the present study, both case of oppos-
ing ���0� and aiding ���0� buoyancy forces are considered. An
outline of the paper is as follows. The mathematical formulation is
given in Sec. 2. Section 3 describes the numerical method used to
solve the problem. The analytical approach for steady state solu-
tion is presented and discussed in Sec. 4. The concluding remarks
are reported in Sec. 5.

2 Problem Statement
The flow configuration under study is a two-dimensional verti-

cal cylindrical annular cavity of height H� and width L�= �r�o�
−r�i filled with a homogeneous fluid-saturated porous medium.
The geometry of the physical system is shown in Fig. 1. r� and z�
are the cylindrical polar coordinates. Neumann boundary condi-
tions are applied, for both temperature �q�i, and q�o=q�ir�i /r�o�,
and concentration �j�i and j�o= j�ir�i /r�o�, on the vertical walls of

the annular layer. All the boundaries are impermeable. The sub-
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scripts i and o refer to the inner and outer cylinder, respectively.
The porous medium is considered to be isotropic and in local
thermal and compositional equilibrium with the fluid. The effect
due to viscous dissipation and porous medium inertial are as-
sumed to be negligible. The binary fluid saturating the cavity is
assumed to be Newtonian and to satisfy the Boussinesq approxi-
mation. The density variation upon temperature and concentration
is described by the state equation

� = �0�1 − ��T��T� − T�0� − �N�N − N0� �1�

where �0 is the fluid mixture density at temperature T�=T�0 and
mass fraction N=N0, and ��T and �N are the thermal and concen-
tration expansion coefficients, respectively. The mass fraction of
the denser component of the mixture, N0, is assumed to be ini-
tially uniform. The phenomenological equations relating the

fluxes of heat Q� � and matter J�� to the thermal and solute gradients
present in a binary fluid mixture are given by �see for instance,
�20��:

Q� � = − k � T� �2�

J���1 − a� = − �D � N − a�D�N�1 − N� � T� �3�

where a is a real number, the significance of which will be dis-
cussed in the following text, k and D are the thermal conductivity
and the mass diffusivity of species through the fluid saturated
porous medium. D� is the thermal diffusion coefficient.

In the foregoing analysis, the stream function formulation is
introduced in the mathematical model. In order to satisfy the con-
tinuity equation, the stream function �� is defined such that

u� =
1

r�

���

�z�
, w� = −

1

r�

���

�r�
�4�

where u� and w� are the velocity components.
The dimensionless variables �primed quantities are dimen-

sional� are defined as follows:

�r,z� = �r�,z��/L� �u,w� = �u�,w��/L�/	

t = t�	/L�2
 � = �/

�5�

Fig. 1 Schematic diagram of the p
T = �T� − T�0�/T� T� = qL�/k
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� = ��/L�	 C = N/N

where N=−j� /�0D for double diffusive convection and N
=N0�1−N0�T�D� /D for Soret driven convection; 	 is the ther-
mal diffusivity, 
= ��0C�p / ��0C� f is the heat capacity ratio, and �
the porosity of the porous medium.

In terms of the above definitions, the dimensionless governing
equations are given by

�2� −
2

r

��

�r
= − rRT� �T

�r
+ �

�C

�r
� �6�

�T

�t
+ u

�T

�r
+ w

�T

�z
= �2T �7�

�
�C

�t
+ u

�C

�r
+ w

�C

�z
=

1

Le
��2C − a�2T� �8�

where

�2 =
1

r

�

�r
�r

�

�r
� +

�2

�z2

The corresponding dimensionless boundary conditions are

r = ri =
�

1 − �
� = 0

�T

�r
= − 1;

�C

�r
= �a − 1� + a

�T

�r
�9�

r = ro =
1

1 − �
� = 0

�T

�r
= − �;

�C

�r
= �a − �� + a

�T

�r

�10�

z = ± A/2 � = 0
�T

�z
=

�C

�z
= 0 �11�

From the above equations it is seen that the present problem is
governed by the thermal Rayleigh number RT, the buoyancy ratio
�, the Lewis number Le, the curvature parameter �, the constant
a, the normalized porosity �, and the cavity aspect ratio A. These
parameters are given by

RT =
g K �TT�L�

	�
� =

�NN

��TT�
Le =

	

D
�12�

ical model and coordinate system
hys
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� =
�



� =

r�i

r�o
A =

H�

L�

The heat and solute transports can be expressed in terms of the
Nusselt and Sherwood numbers defined, respectively, as

Nu =
1

ri ln �

1

T
Sh =

1

ri ln �

1

C
�13�

where  T=T�ri ,0�−T�ro ,0� and  C=C�ri ,0�−C�ro ,0� are the
temperature and concentration differences, evaluated at z=0.

In the above equations the case a=0 corresponds to double
diffusive convection for which the solutal buoyancy forces in the
porous layer are induced by the imposition of constant mass fluxes
j�i and j�o on the vertical boundaries. On the other hand, the case
a=1 corresponds to the case of a binary fluid subject to the Soret
effect. For this situation the boundary conditions on concentration
result from the fact that the solid boundaries are assumed imper-

meable �J��=0� such that ��C /�r−�T /�r�=0.

3 Numerical Solution
The numerical solution of governing equations �6�–�8�, with

specified boundary conditions Eqs. �9�–�11� is obtained using the
SIMPLER algorithm proposed by Patankar �21�. The control volume
formulation used in the algorithm ensures continuity of the con-
vective and diffusive fluxes as well as overall momentum and
energy conservation. The mesh size required for sufficient numeri-
cal accuracy depends mainly on the thermal and solutal Rayleigh
numbers and the aspect ratio of the porous layer. Numerical tests,
using various mesh sizes, were done for the same conditions in
order to determine the best compromise between accuracy of the
results and computer time. Besides the usual control, the accuracy
of computations was estimated using the energy and mass fraction
conservation within the system.

Typical numerical results are presented in Figs. 2�a� and 2�b�
for the case RT=50, �=−0.8, Le=10, a=1 �Soret driven convec-
tion�, A=1, and for �=1, �=0.1, respectively. In the present in-
vestigation, only the case of �=1 is considered. The flow pattern,
isotherms, and isoconcentrates obtained for �=1 �square cavity�,
Fig. 2�a�, are similar to those reported in the literature by numer-
ous investigations while studying the thermally driven convection
of a binary fluid in a rectangular cavity. A clockwise rotating cell
fills up the entire cavity with hydrodynamic, thermal, and solutal
boundary layers along the vertical boundaries of the enclosure.
Because of the relatively high Le considered here the concentra-
tion boundary layers are observed to be sharper than the thermal

Fig. 2 Contour lines of stream function „left…, temperature
„center…, and concentration „right… for RT=50, �=−0.8, Le=10,
a=1, and A=1 ; „a… �=1 ; „b… �=0.1
boundary layers. Also, it is noticed that the temperature in the core
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region varies almost linearly in the vertical direction and is nearly
constant in the horizontal direction. The concentration field in the
region is observed to be almost uniform.

Decreasing the curvature � from 1 to 0.1 yields the results
depicted in Fig. 2�b�. As expected, the effect of � is to destroy the
centrosymmetric properties of the rectangular cavity case. Hence
a shift of the isotherms toward the inner heated vertical wall is
clearly observed in Fig. 2�b�, resulting in a significant asymmetry
of the temperature and concentration fields in the core of the an-
nulus. A noticeable change in the flow patterns, as compared to
those in the rectangular cavity, is also observed. The effect of
decreasing � is to shift the core of the convective cell from the
center of the cavity ��=1� toward the bottom edge of the cooled
wall.

Figure 3 illustrates typical numerical results obtained for a tall
enclosure �A�1� namely for RT=50, �=−0.8, Le=10, a=1, A
=10, and �=0.1. The results clearly illustrate the fact that for this
situation the flow in the core region, i.e., except in regions close to
the upper and lower boundaries, can be considered as parallel.
Also it is observed that the temperature and concentration are
linearly stratified in the vertical direction. The analytical solution,
developed in the following section, will rely on those observa-
tions.

Numerical tests have been performed to determine the mini-
mum aspect ratio above which the flow can be assumed to be
parallel. In the range of the parameters considered in this investi-
gation it was found that the numerical results can be considered
independent of the aspect ratio when A�8. For this reason most
of the numerical results reported here were obtained for A=8 with
typically 60�180 mesh points.

4 Analytical Solution
In this section an analytical model, for steady state flows within

a slender enclosure is proposed. Thus, in the limit A�1, the par-
allel flow approximation �see for instance �22,23�� leads to the

Fig. 3 Contour lines of stream function „left…, temperature
„center…, and concentration „right… for RT=50, �=−0.8, Le=10,
a=1, �=0.1, and A=10
following approximations
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��r,z� = ��r� T�r,z� = CTz + �T�r� C�r,z� = CSz + �S�r�
�14�

Using the above approximations, together with the boundary con-
ditions, Eqs. �6�–�8� are reduced to a set of ordinary differential
equations

d2�

dr2 −
1

r

d�

dr
− �� = � �15�

d�T

dr
= −

1

r
�CT� + ri� �16�

d�s

dr
= −

1

r
��LeCS + aCT�� + ri� �17�

The solution of above equation being function of the parameter
� and � defined as

� = RT�CT + ��LeCS + aCT�� � = − RTri�1 + �� �18�
With the approximations involved in Eq. �14� it is not possible

to apply the boundary conditions in the z direction, Eq. �11�. How-
ever, it can be easily demonstrated �4� that the heat and species
transport across a transversal section, at any z, are given by

�
ri

ro �T

�z
dr −�

ri

ro

wTdr = 0

�19�

�
ri

ro �C

�z
dr + a�

ri

ro �T

�z
dr − Le�

ri

ro

wC dr = 0

The solution of the above set of equations depends on the pa-
rameter �. According to the values of RT ,� ,Le, and a this param-
eter can be greater or smaller than zero. The two situations will be
now discussed.

4.1 Case of �Ð0. For this situation the parameter �2=� is
introduced, such that � is a real value. The solution of the set of
equations �15�–�17� satisfying the boundary conditions in the r
direction, Eqs. �9� and �10�, yields

��r� = − ri�0
1 + f�r�
1 + f���

�20�

�T�r� = CTri�0
ln r + g�r�
1 + f���

− ri ln r �21�

�S�r� = �Le CS + aCT�ri�0
ln r + g�r�
1 + f���

− ri ln r �22�

where

f�r� = r�C1I1��r� + C2K1��r��

g�r� = C1I0��r� + C2K0��r�

�0 =
�

ri�
2 �1 + f���� � =

1 + �

2�1 − ��
�23�

C1 =
1

riro

roK1��ro� − riK1��ri�
I1��ro�K1��ri� − I1��ri�K1��ro�

C2 = −
1

riro

roI1��ro� − riI1��ri�
I1��ro�K1��ri� − I1��ri�K1��ro�

In the above equations In and Kn are the Bessel functions of the

nth orders and �c=−�0 is the stream function value at the center
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of the cavity.
Substituting Eqs. �20�–�23� into Eq. �19� and performing the

resulting integrals yields the values of CT and CS as

CT =
2b

c

�0

1 + b�0
2

�24�

CS =
2b

c

Le �0 + a�0�1 − Leb �0
2�/�1 + b�0

2�
1 + Leb �0

2

where

b =
ri

2X2

�
c =

2X2

X1
X1 =�

ri

ro 1

r

�1 + f�r��
�1 + f����

dr X2 =�
ri

ro 1

r

�1 + f�r��2

�1 + f����2dr

�25�

To compute the value of � a transcendental equation is estab-
lished by combining Eqs. �18� and �24�

b2Le2�0
4 + b�1 + Le2��0

2 +
2 b RT

c �2 �1 + ��Le2 − a�1 + Le���0

+ �1 + ��b Le2�0
2	 + 1 = 0 �26�

The above equation can be solved numerically using the
Newton-Raphson procedure. In this way the temperature and con-
centration gradients CT and CS can be obtained as function of
RT ,� ,Le,�, and a.

From Eqs. �13�, �14�, �21�, and �22� it is found that the Nusselt
and Sherwood numbers are given by

Nu =
ri ln ��1 + b�0

2�
ri ln � + b�d + ri ln ���0

2 �27�

Sh =
ri ln ��1 + b Le2�0

2�
ri ln � + b�d + ri ln ��Le2�0

2 + a b c�1 + Le��0/�1 + b�0
2�
�28�

where d=riX1
2 /X2.

4.1.1 Boundary Layer Regime ���1�. The above equations
can be considerably simplified for the boundary layer regime for
which ��1. For this situation we have that I0��r�
e�r�1
+1/8�r+ ¯ � /�2��r, I1��r�
e�r�1−3/8�r+ ¯ � /�2��r,
K0��r�
��e−�r�1−1/8�r+ ¯ � /�2�r and K1��r�
��e−�r�1
+3/8�r+ ¯ � /�2�r. After a considerable amount of algebra, it is
found that X1 and X2 are now given by

X1 = − �ln � + �1 − �2�/��� X2 = − �ln � + 3�1 − �2�/2���
�29�

Also, it is found that Eq. �26� reduces to

�0
2 =

�2K0

2ri
2K1

�1 ± �1 − �� �30�

where �0=� /ri�
2 and

K0 = �Le2 + � − a��1 + Le��ln � K1 = Le2�1 + ��� ln �

K2 = �1 + ���2 � =
4K1K2

�4K0
2 �31�

There again the value of � must be evaluated by solving nu-
merically the above equation. However, upon assuming that
�→0 it is found that the solution of Eq. �30� is given by

� = � �

	0
�1/5

RT
2/5�1 + ��2/5 �0

2 =
	0

��
�32�

where 	0= ��+Le2−a ��1+Le�� / �1+��Le2 must be positive to

obtain a real solution of Eq. �32�, i.e.
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� �
Le2

a�1 + Le� − 1
�33�

which is an excellent approximation to the boundary layer regime
��→0� and this for a wide range of the governing parameters.

From Eqs. �27�–�29� and �32�, the Nusselt and Sherwood num-
bers are given by

Nu =
1 − 	0�3 − Y�

1 + 	0�1 − 4/Y�
�34�

Sh =
1 − Le2	0�3 − Y�

1 + Le2	0�1 − 4/Y� + so
�35�

where Y =2�G���, G���=� ln � / ��2−1� and so=a�1+Le��1
−�� /� ln � Nu. In the limit Y →�, Eqs. �34� and �35� reduce to

Nu = 2	1G���� + �1 − 4	1 + 4	1
2���

i=1

n

�Y1�i� �36�

Sh = 2	2G���� + �1 − 4	2 + 4	2
2 − 	3��1 + �

i=1

n

�Y2�i� �37�

where 	1=	0 / �1+	0�, 	2=	0Le2 / �1+so+	0Le2�, 	3
=	2so /	0Le2, Y1=4	1 /Y and Y2=4	2 /Y.

For a rectangular cavity �→1 and G���→1/2 it is readily
found that

Nu = 	1� + �1 − 4	1 + 4	1
2���

i=1

n

�Y1�i� �38�

Sh = 	2� + �1 − 4	2 + 4	2
2 − 	3��1 + �

i=1

n

�Y2�i� �39�

where Y1=4	1 /� and Y2=4	2 /�.
Figure 4 exemplifies the effect of the thermal Rayleigh number

RT on �0 ,�, the Nusselt number Nu, and the Sherwood number
Sh for the case �=1, Le=10, �=0.3, and a=0 �double diffusive
convection�. The analytical solution represented by solid lines,
Eqs. �23�–�28�, is seen to be in excellent agreement with the nu-
merical solution of the full governing equations, depicted by
closed symbols. Figure 4 shows that when the thermal Rayleigh
number is small enough �RT�1� both the side-to-side heat and
mass transfers are ruled by pure diffusion and Nu and Sh become
of order one. Upon increasing the value of the thermal Rayleigh
number both Nusselt and Sherwood numbers increase monoto-
nously with RT up to RT�102 where the boundary layer regime is
reached. This situation will be discussed later on. The variation of

Fig. 4 Comparison between analytical and numerical solu-
tions for the case �=1, Le=10, and �=0.3. Effect of RT on
� ,�0, Nu and Sh for a=0 „double diffusive convection…
�0 and �, as predicted by the present theory, is also presented, for
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convenience, in the graph. It is noted that the inverse of � is a
measure of the thickness of the boundary layers adjacent to the
vertical walls of the cavity.

Figure 5 illustrates the effect of Rayleigh number RT and cur-
vature � on the Nusselt and Sherwood numbers, Nu and Sh, for
the case �=0.01, Le=10, and a=1. At very low Rayleigh num-
bers both the Nusselt and Sherwood numbers approach unity for
all radius ratios �. This follows from the fact that Nu and Sh have
been normalized with respect to the pure conduction value ri ln �.
An increase in RT is naturally always associated with the decrease
of T and S. As indicated by Fig. 5, Nu and Sh depend on �. At
a given RT, both Nu and Sh are observed to increase as the value
of � is made larger.

Equations �36� and �37� can be further reduced by considering
two important extremes in which the present phenomena can ex-
ist, namely

4.1.2 Heat-Transfer-Driven Boundary Layer Flows. Heat-
transfer-driven boundary layer flows, which are dominated by the
buoyancy effect due to side heating such that the condition
��1 is satisfied, are now discussed. Under these circumstances,
Eqs �36� and �37� in the limit Le�1, reduce to

Nu = G���� Sh = �1 + 2Nu� �40�

where �=�1/5RT
2/5�1+��2/5 and G���→1/2 when �→1.

The asymptotic behavior of the Nusselt and Sherwood num-
bers, as predicted by the above equations, is represented in Fig. 5
as dotted lines. It is observed that the start of the boundary layers
depends upon �. The higher the radius ratio is, the larger the
Rayleigh number required to reach the boundary layer.

On the other hand, in the limit Le�1, it is found that

Nu = 2G���	1� + 1 − 4	1 + 4	1
2

�41�
Sh = 2G���	2� + 1 − 4	2

2 − 	3Le

4.1.3 Mass-Transfer-Driven Boundary Layer Flows. Mass-
transfer-driven boundary layer flows, where the buoyancy is
caused primarily by concentration variation where the condition
��1 is satisfied. For this situation Eqs. �34� and �35� yield

For Le�1

Nu = 2G���	1� + 1 − 4	1 + 4	1
2

�42�
Sh = 2G���	2� + 1 − 4	2 + 4	2

2 − 	3

and for Le�1

Nu = 2G���	1� + 1
�43�

Sh = 2G���	2� + 1

The above approximate solutions for Le�1, are more precise

Fig. 5 Comparison between analytical and boundary layer so-
lutions for the case �=0.01, Le=10, a=1 and various values of
�; effect of RT on Nu and Sh
than predicted by �22� for �→1 especially when � is small. As an
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example, for RT=100, �=10−3, Le=10, �=1, and a=0, Eq. �40�
gives a Sherwood number Sh=8.35 which is close to that pre-
dicted by the exact solution Eq. �28�, namely Sh=8.37. On the
other hand, for the same case the value of the Sherwood number
predicted by �22� is Sh=6.31, the deviation of this result from the
exact solution being about 25%. In addition, the above approxi-
mate solutions are valid for a large range of the Lewis number, Le,
and buoyancy ratio �, and this even when the two buoyancy
forces are approximately equal. Available solutions in the litera-
ture ��=1� are only concerned with asymptotic situations such as
the heat driven flows and the solute driven flows for which �
→0 and �→� respectively.

4.2 Case of �Ï0. For this situation the parameter �2=−� is
considered. Thus, the solution for this situation is obtained by
substituting i�=� into Eqs. �20� and �28�. The resulting solution
is very similar with the functions I0�i�r� , K0�i�r� , I1�i�r�, and
K1�i�r�, merely replaced by the modified Bessel functions
J0�i�r� , Y0�i�r� , J1�i�r�, and Y1�i�r�.

For instance the value of the stream function, Eq. �20�, is now
expressed by

��r� = − ri�0
1 + f�r�
1 + f���

�44�

where

f�r� = r�C1J1��r� + C2Y1��r��
�45�

�0 =
�

ri�
2 �1 + f����

The transcendental equation �26� is then given by

b2Le2�0
4 + b�1 + Le2��0

2 −
2bRT

c�2 �1 + ��Le2 − a�1 + Le���0

+ �1 + ��b Le2�0
3	 + 1 = 0 �46�

4.3 Effect of Buoyancy Ratio �. The effect of buoyancy ra-
tio � on the stream function, temperature, and concentration con-
tours is demonstrated in Fig. 6 for the case RT=50, Le=10, �
=0.5, A=8, a=1 and various values of �. The flows direction in
the graphs can be easily identified according to the distributions of
temperature or solute. As a result of the thermal and solutal
boundary conditions considered here, the direction of the flow
induced by the thermal buoyancy forces is clockwise, whereas
that imposed by the solutal buoyancy forces depends upon the
sign of the concentration coefficient �s in the state equation. Thus
the direction of the solutal flow is clockwise for �s �i.e., ��0�
and counterclockwise for �s �i.e. ��0�.

Figure 6�a� shows the results obtained at �=0 for which the
effect of the concentration is nil such that the resulting clockwise
circulation is completely governed by the temperature gradients.
When the buoyancy ratio is increased above zero ���0�, the
mass species and thermal buoyancy forces are augmenting each
other, and thus they accelerate the flow clockwise. This is the
region of aiding flows. Figure 6�b� illustrates the results obtained
for a large buoyancy ratio �=10 for which the flow is dominated
by the mass species buoyancy forces. The results indicate that a
large portion of the fluid in the center of the annulus is stagnant
because of the blocking effect of the vertical stratification of the
density field. The boundary layer character of the flow pattern is
noticed. When the buoyancy ratio is decreased below zero ��0,
the mass species and thermal buoyancy forces are counteracting
each other and the resulting flow pattern evolutes from a thermal-
dominated clockwise vortex �Fig. 6�a�� to a solutal-dominated
counterclockwise circulation, as exemplified in Fig. 6�c� for the
case �=−10. As discussed in the following, for intermediate val-

ues of � the transition between thermally and solutably dominate
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flow is characterized by multicellular flow patterns in which ther-
mal and mass species buoyancy forces dominate separate circula-
tions within the enclosure.

The effect of the buoyancy ratio � on �0 is illustrated in Fig. 7
for the case RT=50, Le=10, a=1 and various values of curvature
parameter, �. Here again an excellent agreement is observed be-
tween the analytical and the numerical results. The buoyancy ratio
is varied in the range −9 to 9. This covers the spectrum from
opposed but solutal-dominated flow �=−9, to purely thermal-
dominated flow ��=0� to aided solutal-dominated flow �=9.
When � is above zero the thermal and solutal buoyancy forces act
in the same direction �aiding flow�. The values of �0 are positive
indicating a clockwise flow circulation. Increasing the buoyancy
ratio from 0 to 9 the flow becomes more and more dominated by

Fig. 6 Contour lines of stream function „left…, temperature
„center…, and concentration „right… for RT=50, Le=10, �=0.5, a
=1, and A=8; „a… �=0, „b… �=10, and „c… �=−10
the mass species buoyant forces. When � is below zero the ther-
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mal and solutal buoyancy forces act now in opposing directions.
In the range −1���0 the thermal buoyancy forces are clearly
dominating the flow such that �0 remains positive. As the value
of � is decreased below −1 the analytical model predicts the ex-
istence of three possible solutions for a given value of �. Two
solutions, represented by solid lines, correspond to unicellular
flows. The flows, corresponding to the upper branches, are in-
duced by the thermal buoyancy forces and thus circulate in the
clockwise direction. For the lower branches the flows are driven
by the solutal effects yielding a counterclockwise circulation.
These two type unicellular flow branches are connected by dashed
lines which correspond to flow patterns consisting in three vertical
counterrotating cells. The range of �, for which these multicellu-
lar flows patterns exist, depends slightly upon the value of �.

Numerical confirmation of the existence of multiple solutions is
illustrated in Fig. 8 for the case RT=50, Le=10, �=−1.8, A=4,
and a=1. The results obtained for the case of a rectangular cavity
��=1�, Fig. 8�a�, are first discussed. The first result �i� shows a

Fig. 7 Effect of the buoyancy ratio � on the amplitude �0 for
the case RT=50, Le=10, a=1, and various values of �

Fig. 8 Contour lines of stream function „left…, temperature
„center…, and concentration „right… for RT=50, Le=10, �=−1.8,

a=1, A=4, and „a… �=1 and „b… �=0.5
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counterclockwise unicellular circulation corresponding to the
lower solutal branch. This solution was obtained using, as initial
conditions, the numerical results obtained for �=−3, i.e., a strong
counterclockwise flow dominated by the mass species buoyancy
force. The second result �ii� indicates the existence of a large
clockwise rotating cell in the core of the cavity, induced by the
thermal buoyancy forces and two smaller cells, adjacent to the
vertical walls, induced by the solutal buoyancy forces. This flow
configuration was obtained numerically starting the numerical
code with a perturbated flow consisting in two vertical symmetri-
cal cells. It is noted that, for the parameters considered here, it has
not been possible to obtain the third solution predicted by the
analytical model namely the thermally dominated unicellular
clockwise circulation. Also it is noted that the results presented
here were obtained for cavity with an aspect ration A=4 for which
the flow is not fully parallel. This is due to the fact that for higher
values of A steady state flows are not possible in a range of � that
depends upon curvature parameter �.

The effect of � on these solutions is illustrated in Fig. 8�b� for
�=0.5. Multiple solutions are also observed for this situation but,
naturally, the symmetry of the flows patterns is destroyed. Thus,
the multicellular flow pattern consists now in only two cells. The
concentration-governed eddy occurring near the outer wall at �
=1 vanishes at �=0.5 due to the increase of the thermal-
dominated vortex.

5 Conclusion
In this paper a study of natural convection in a vertical porous

annulus filled with a binary fluid is carried out. Both the case of
double-diffusive convection �a=0� and Soret-driven convection
�a=1� are considered. The influences of the major system param-
eters on the present phenomenon have been predicted in two dif-
ferent ways, using an analytical approach based on the parallel
flow approximation and a numerical solution of the full governing
equations. The summary of the major results is as follows.

�i� Under the thermal and solutal boundary conditions im-
posed on the vertical walls of the enclosure it has been
demonstrated numerically that the flow in the core of the
cavity is almost parallel provided that the aspect ratio A is
large enough. Based on this fact, an approximate analyti-
cal solution, valid for flows ranging from pseudo-
conduction to boundary layer regimes, has been derived.
Although the resulting analytical model requires a numeri-
cal procedure to solve a transcendental equation, this is by
far a much easier task than solving numerically the full set
of governing equations.

�ii� The parallel flow model proposed in this study has been
found to be quite accurate in predicting the flow structure
and heat and mass transfers for a wide range of the gov-
erning parameters. Useful approximate expressions have
been derived to describe the boundary layer regime. Sim-
plified equations for Nu and Sh have been obtained for
heat-driven and solute-driven flow regimes. For the case
of opposing flow the existence of multiple solutions, for a
given set of the governing parameters, has been demon-
strated analytically and numerically.

Nomenclature
a � real number
A � aspect ratio of the cavity, H� /L�
C � dimensionless concentration, �N−N0� /N

CS � dimensionless concentration gradient in z
direction

CT � dimensionless temperature gradient in z
direction

D � mass diffusivity of species, m2 s−1

D 2 −1 −1
� � thermal diffusion coefficient, m s K

Transactions of the ASME



g � gravitational acceleration, m s−2

H� � height of enclosure, m
j� � solute flux per unit area, kg m−2 s−1

k � thermal conductivity, W m−1 K−1

K � permeability of porous medium, m2

L� � enclosure width�r�o−r�i, m
Le � Lewis number, 	 /D

N � characteristic concentration�
aN0�1−N0��T�D� /D− �1−a�j� /�0D

q� � constant heat flux per unit area, W m−2

S� � concentration of the denser component, kg m−3

S�0 � initial mass fraction
t � dimensionless time, t�	 /L�2

T � dimensionless temperature, �T�−T�0� /T�
T� � characteristic temperature, q�L� /k

u � dimensionless velocity in r direction, u�L� /	
w � dimensionless velocity in z direction, w�L� /	

r, z � cylindrical polar coordinates, r� /L� ,z� /L�

Greek Symbols
	 � thermal diffusivity, m2 s−1

� � dynamic viscosity of fluid, kg m−1 s−1

� � kinematic viscosity of fluid, m2 s−1

� � dimensionless temperature field
� � density of fluid, kg m−3

��C� f � heat capacity of fluid
��C�p � heat capacity of saturated porous medium,

J m−3 K−1


 � heat capacity ratio, ��C�p / ��C� f

� � curvature parameter, r�i / r�o
� � dimensionless function, �� /	L�
� � porosity of the porous medium

Subscripts
i � inner cylinder
o � outer cylinder

Superscript

� � dimensional variable
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Fluid Flows Through Some
Geological Discontinuities
In this paper the fluid flow through some composite channels has been investigated in the
physical parameter ranges appropriate to some flows in geological applications. In par-
ticular, we have considered the fluid flow through a composite channel that has under-
gone a vertical fracture. The vertical connecting channel is also composed of a composite
material. In such physical situations, the materials undergo several orders of magnitude
changes in their Darcy numbers. This results in very large changes in the pressure in the
vicinity of the interfaces between these materials. Therefore it is necessary to develop
mathematical and numerical techniques to deal with such situations and in this paper an
approach is presented. �DOI: 10.1115/1.1991861�
1 Introduction
Fluid flow through porous media is encountered in many dif-

ferent branches of science and engineering, ranging from agricul-
tural, chemical, civil, and petroleum engineering, to food and soil
sciences, see Nield and Bejan �1� and Ingham and Pop �2,3�. In
particular, the processes of such fluid flows have attracted the
attention of scientists, engineers, and politicians who recognize
the economical importance of enhancing oil recovery techniques,
in addition to their growing concerns about pollution and water
quality extracted from ground water flows. Over the past decades,
flows through porous media have extensively been studied experi-
mantally and theoretically. The one-dimensional problem studied
by Darcy �4� has served as a starting point for numerous practical
examples and it is a constant challenge for theoreticians. While
the original conditions studied by Darcy are found in many prac-
tical situations, it is the existence of more general situations that
are especially deserving of theoretical analysis as they usually
represent situations in which experiments are difficult to perform.

The main focus of this paper is to consider numerical investi-
gations of fluid flow through some geological configurations in-
volving discontinuities in channel height and where different sec-
tions of the channel are composed of several different layers of
different porous materials. The effects of these discontinuities on
the fluid flow through the regions of different permeabilities is
demonstrated by presenting for each situation both the streamline
pattern and the change in the overall pressure. The discontinuities
and the layered system channels are demonstrated since they are
the typical physical phenomena that occur in oil reservoirs and
groundwater flows. For example, oil is found underground,
trapped in the interstices of porous rocks such as sandstone and
limestone. An oil bearing stratum will have above it an imperme-
able rock, such as clay or shale, which prevents the oil from
migrating upward. There will be a horizontal variation of the
depth of the stratum due to an upward dome or an upward slant
terminated by an impermeable fault, which prevents the oil from
moving sideways, or a permeable fracture, which creates a cavity
where the oil can flow through.

The governing equation for flows through geological structures
is the Brinkman equation which has to be solved along with the
continuity equation. If the Darcy number �=k /H2, where k is the
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permeability of the porous media and H is a typical length scale�
is of the order of unity or is infinite then it is fairly easy to obtain
numerical solutions of these equations even in complex geom-
etries. However, values of the permeability vary widely for natural
materials and typical values of k, in units of m2, are as follows:
sand 1.8�10−10, sandstone, 1.0�10−12, limestone 4.5�10−14,
and shale 1.0�10−16, see Scheidegger �5�. Thus if we take the
characteristic length, in units of m, to be in the range 10−1�H
�102 then for a channel filled with sandstone the Darcy number is
in the range 10−16�Da�10−10. These are typical values of the
Darcy number in geological situations.

2 Mathematical Model
The focus of this paper is to consider some of these real physi-

cal values of Da in solving flow through composite channels that
incorporate the geological features of both faults and fractures.
Unfortunately, on implementing very small values of Da in the
nondimensional Brinkman equation then the numerical results of
the discretized form of the Brinkman equation are found to con-
verge extremely slowly. For example, the solution for flow in a
channel with H=1 m which is filled with sandstone, where Da
=1.0�10−12, takes approximately four weeks of CPU time
�where all the CPU times stated in this paper are based on using a
SUN workstation with an ULTRA 10 processor� to converge into
a fully developed solution. This is because of the high resistance
provided by the Darcy parameter, �=� /Da, in the Brinkman
equation, and hence for a given nondimensional flux of fluid
through the channel then extremely large values of the pressure
gradient are required in order to balance the Darcy term, �v.

In addition, the presence of large velocity gradients close to the
boundaries can also slow down the rate of convergence. In most
of the previous investigations in this class of problems, both im-
permeable and no slip boundary conditions on the perimeter of the
channels have been assumed and hence the conditions u=v=w
=0, where u, v, and w are the velocity components in the Carte-
sian coordinate directions x, y, and z, respectively, have been
implemented on the boundaries. However, in order to attempt to
speed up the rate of convergence for very small values of the
Darcy number, say Da�10−5, in this paper a set of boundary
conditions that avoids the large velocity gradients on the bound-
ary, while maintaining the same flow structure throughout the rest
of the configuration, has been introduced. In particular, while we
have retained the zero normal velocity on the boundary, rather
than enforce the zero tangential velocity condition we have as-
sumed that the normal gradient of the tangential velocity is zero
on the boundary, as this would be the appropriate boundary con-
dition for Darcy flow. Thus in the two-dimensional situation we
have imposed v=�u /�y=0 on the upper and lower surfaces of

horizontal channels, and u=�v /�x=0 on the sides of vertical
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channels, which is linked with the horizontal channel. However,
the extremely slow convergence rates at small values of perme-
ability still prevail, increasing by only about 2% compared to
when implementing the no slip boundary condition. This suggests
that the large velocity gradients near solid surfaces are not the
cause of the slow convergence and exactly what is the cause is
more debatable.

Numerical accuracy is another factor that requires consider-
ation. Since, when imposing a constant flux of fluid, the pressure
gradient can change over several orders of magnitude as the Darcy
number is modified, for example, from Da=10−2 to Da=10−16

then the pressure gradient changes from 102 to 1016. Hence in
such situations the convergence criteria must be based on the mass
residual, rather than on the maximum difference between the ve-
locity and the pressure values at successive iterations, since this
latter condition assumes that both these physical quantities are of
approximately the same order of magnitude. Likewise, it should
be noted that when fixed pressure gradients are imposed, and the
flux of fluid is allowed to adjust accordingly over such a range of
values of the Darcy parameter, then for situations resulting in very
small flow rates, a convergence criteria based on the mass residual
will no longer be appropriate. This arises because the magnitude
of the fluid velocity itself will be very small and hence the mass
residual would be required to be even smaller in order to achieve
accurate results.

The aim of this paper is to present a technique in order to
accelerate the rate of convergence of the control volume method
�CVM� for solving the Brinkman and continuity equations when
implementing very small values of the Darcy number Da�10−5

on various numerical investigations of flow through some geologi-
cal discontinuities of the composite channel presented in Fig. 1.
This figure corresponds to the flow through a two-dimensional
geometrical configuration composed of inlet and outlet channels
which are linked by a vertical channel. The upper and lower sur-
faces of the horizontal channels are assumed to be impermeable
and the lengths of these channels to be sufficiently long for fully
developed solutions to be reached. In addition, the vertical sides
and the upper and lower ends of the vertical channel are taken to
be closed and the length of the channel sufficient for the flow
details throughout the majority of the channel to be independent
of its length. Situations analogous to the present configuration can
be found in oil reservoirs composed of several layers of sandstone
or sand and impermeable shales in which faults and fractures are
located, see Clennell �6� and Lesnic et al. �7�.

3 Mathematical Formulation
The general steady Brinkman and continuity equations are

Fig. 1 A schematic diagram of the problem when fluid flows
through a two-dimensional geometrical configuration consist-
ing of inlet and outlet composite channels which are linked by
a vertical channel
given by

Journal of Applied Mechanics
P�V · ��V = − �P + �̃�2V −
� f

k
V �1�

��PV� = 0 �2�

We now introduce the following nondimensional variables:

V = U0v, P = �* �̃U0

H
p, X = Hx, P = �0�, Dai =

ki

H2

�3�

where i=1,2,…, represents the different materials within the
structure, and �0 and U0 are the reference fluid density and veloc-
ity, respectively. On substituting these quantities into Eqs. �1� and
�2�, we obtain the following nondimensional steady Brinkman and
continuity equations:

�
�

�* �v · ��v =
1

R�− �p +
1

�*�2v −
�i

�*v� �4�

���v� = 0 �5�

Thus it can be seen that at large values of �i, i.e., small Darcy
numbers, the dominant terms in Eq. �4� are the pressure gradient
and the Darcy term ��i /�*v�, which are both O�1� in the region
where �i=�*. In addition, the magnitudes of the inertia and dif-
fusion terms are negligible in comparison with the magnitudes of
these dominant terms. Hence the nondimensional Brinkman Eq.
�4� reduces effectively to the Darcy equation for Da�1. There-
fore, it has been found that the Brinkman equation, in the form
given by Eq. �4�, enables us to consider very small values of the
Darcy number, together with much improved rates of conver-
gence.

4 Approach to the Average Pressure Correction (APC)
When implementing the modified version of the Brinkman Eq.

�4� for a composite channel where the ratio of the lowest perme-
ability to the highest permeability of the different media is less
than about 10−3 m2, i.e., the ratio of the largest to the smallest
Darcy parameter is 	103, then difficulties arise in securing a con-
verged numerical solution using the CVM. The presence of a low
relative permeability, by several orders of magnitude relative to
elsewhere in the channel, can result in a large and rapid pressure
drop and hence a very slow convergence rate in the solution pro-
cedure. This slow convergence results from the global mass con-
servation being obtained from the local mass conservation through
the pressure correction equation, see Al-Hadhrami et al. �8�, which
is not sensitive to changes in the fluid velocity caused by rapid
changes in the permeability of the porous media. Hence, the itera-
tive procedure requires many iterations to establish the large pres-
sure gradients.

Based on the global mass conservation principle, Wen and In-
gham �9� integrated the momentum equation for an approximate
one-dimensional flow and derived a line average pressure correc-
tion from an average velocity correction. This pressure correction
can significantly accelerate the rate of convergence of the iterative
procedure when rapid changes are present due to changes in the
physical properties within the solution domain. Next, Wen and
Ingham �9� developed a procedure for dealing with the large pres-
sure drops which are produced when fluid is forced to flow
through a filter paper, again resulting in a significantly accelerated
rate of convergence of the iterative scheme when the resistance
from the filter is large.

In order to obtain convergent results for small permeability val-
ues in the present work, a similar procedure to that proposed by
Wen and Ingham �9,10� is employed, but now related to a hori-
zontal fluid flow across an arbitrary thick vertical porous media
composed of two different Darcy parameters �̄1 and �̄2 rather than
to a thin filter paper. The technique can also be generalized to

situations when the porous media is composed of any number of
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Darcy parameters. Likewise, the same analysis is valid when there
is a vertical fluid flow across a horizontal porous media, except for
the change of the parameters which relate to the vertical flow, e.g.,
the fluid velocity and the mesh sizes.

In the porous media the momentum change in the x direction
and the shear stress are both small compared with the resistance.
Thus, the Brinkman Eq. �4� simplifies to the Darcy equation and
the resistance is balanced by a large pressure drop in the x direc-
tion. Therefore, when there are two porous regions with Darcy
parameters �̄1 and �̄2 and areas S1 and S2, where S1+S2=S is the
total cross-sectional area of the porous media as shown in Fig. 2,
then the governing equations can be approximated by

�
p̄1


l1
� = − �̄1ū1 �6�

�
p̄2


l2
� = − �̄2ū2 �7�

where �̄1=�1 /�*, �̄2=�2 /�*, and �* can be taken to be either �1
or �2, 
l1 and 
l2 are the thicknesses in the x direction of the
porous regions �̄1 and �̄2, respectively, ū1 and ū2 are the average
velocities, and p̄1 and p̄2 are the corresponding average pressures.
If q* and ū* are assumed to be the updated total flux of fluid and
updated total average fluid velocity, respectively, in the x direc-
tion, and q� and ū� the corrections of the total flux of fluid and
total average velocity, respectively, then

q = q* + q� and ū = ū* + ū� �8�

The total average velocity correction is obtained by using the
global mass conservation principle, namely,

	
S

�ū* + ū��dS = q �9�

and this yields the total average velocity of fluid correction as

ū� =

q −	
S

ū*dS

	
S

dS

�10�

where q is the total specified flux of fluid in the x direction, which
is given by

q =	
S

ūdS =	
S1

ū1dS +	
S2

ū2dS �11�

¯ ¯

Fig. 2 The geometry of a horizontal fluid flow across an arbi-
trary vertical porous media composed of two Darcy parameters
�̄1 and �̄1 of thicknesses �l1 and �l2, and cross-sectional areas
S1 and S2, where S1+S2=S
Substituting u1 and u2 from Eqs. �6� and �7� into �11� results in
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q = −
1

�̄1
	

S1


p̄1


l1
dS −

1

�̄2
	

S2


p̄2


l2
dS �12�

If we let p̄1� and p̄2� be the average pressure corrections, and p̄1
* and

p̄2
* be the updated values of the average pressure, then the correct

average pressures for each of the regions are given by

p̄1 = p̄1
* + p̄1�, p̄2 = p̄2

* + p̄2� �13�

Inserting the values of q and p̄1 and p̄2 from expressions �8� and
�13� into Eq. �12� yields

q* + q� = −
1

�̄1
	

S1

�
p̄1
*


l1
+


p̄1�


l1
�dS −

1

�̄2
	

S2

�
p̄2
*


l2
+


p̄2�


l2
�dS

�14�

The updated values of the flux of fluid q* and pressures p̄1
* and p̄2

*

satisfy Eq. �12�, and hence combining Eqs. �12� and �14� results in
the following:

q� = −
1

�̄1
	

S1


p̄1�


l1
dS −

1

�̄2
	

S2


p̄2�


l2
dS �15�

Based upon the assumption that the average pressure on the rear
faces of the two porous regions �̄1 and �̄2 are of approximately
the same order of magnitude, and likewise on the front faces, then


p̄1� 
 
p̄2� �16�

On substituting Eq. �16� into Eq. �15�, we obtain

q� 
 �−
1

�̄1

S1 −
1

�̄2

S2

l1


l2
�
p̄1�


l1
�17�

When the pressure nodes are located on the two sides of the po-
rous media, expression �17� can be modified to the form


p̄1� 
 −
�̄1�̄2q�
l1

��̄2S1 + �̄1S2

l1


l2
� �18�

where 
p̄1� is the difference between the pressure corrections on
the two sides of the porous region �̄1. Furthermore, if we let the
average pressure correction in front of the porous media take the
value of zero then we obtain the average pressure correction
�APC� across the porous media as

p̄1� 
 −
�̄1�̄2q�
l1

��̄2S1 + �̄1S2

l1


l2
� �19�

The value of the APC in Eq. �19� should then be added to the
pressure in the domain downstream of the porous media such that
the pressure in this region becomes

p = p* + �pp� + �ap̄1� �20�

where �p is an under-relaxation factor that takes a value of about
0.4 or even less. The relaxation factor �a takes a small value in
order to avoid an overcorrection when the Darcy parameters are
very large; for example, when the value of ��̄1�̄2
l1�=1020, we
set �a=10−3 or less. The APC should be used in the CVM after
each global iteration. In addition, although expression �19� is es-
tablished as the additional pressure correction required from one
side of the media to the other side, it should be subdivided and
applied on a series of lines within the media, using different con-
stants of proportionality for �̄1 and �̄2, with the number of lines
applied depending on the thickness of the low permeable porous
media. However, as mentioned above, the value on the last line
after which this technique is not employed should be added to all
the grid nodes located downstream of this line in order to maintain

the same flux of fluid q. Further, it should be noted that the APC
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formula �19� can be employed provided that the approximations
assumed in establishing Eq. �16� are satisfied.

5 Numerical Investigations
The average pressure correction �APC� technique is employed

on several geometrical configurations of the composite channel
presented in Fig. 1. It should first be remembered that the linear
Brinkman equation holds for flows at low Reynolds numbers,
namely, R�10, in which the driving forces are balanced by both
the viscous forces and the media resistance. In the present inves-
tigation of the configuration shown in Fig. 1, the horizontal inlet
and outlet channels have dimensional distances �X0−XL�	3H and
�XR−X1�	4H, and the vertical sides have dimensional distances
�Y0−YD�= �YU−Y1�	5H. These distances ensure that when 0
�R�1 the fully developed solutions have been reached and the
flow details throughout the majority of the vertical channel are
independent of its length. Numerous geometrical configurations
have been investigated but in order to illustrate the typical results
obtained, in all the results presented in this paper, the dimensional
width of the vertical channel is taken to be equal to half the width
of the inlet and outlet channels, namely, H, and the outlet channel
is offset from the inlet channel by a distance 5H.

The small values of the Darcy numbers used in all the numeri-
cal investigations are Da=10−10, Da=10−12, and Da=10−16, which
represent the physical permeability values of the natural materials,
sand, sandstone, and shale, respectively. All the numerical results
presented in this paper are for �=1, �=1, R=1, Rmass=10−4, the
same nondimensional flux of fluid through the channel, namely,
q=2, and for mesh sizes 
x=0.1 and 
y=0.05, since the results
obtained for any smaller mesh are graphically indistinguishable.

In the next section, the use of the APC technique to accelerate
the rate of convergence of the CVM, enables us to perform several
numerical investigations when implementing the above values of
the Darcy numbers. These will generate a deeper understanding of
the general flow processes in the composite channel shown in Fig.
1, and model some of the physical situations of the geological
structures that are likely to be observed in the field. It should be
noted that all the geometrical configurations and the physical val-
ues of Da considered for each numerical investigation have been
carefully selected with the assistance from several geologists and
other experts in the field, namely, staff at the Rock Deformation
Research �rdr� Centre, University of Leeds �Leeds, UK�. In addi-
tion, for the figures relating to each numerical investigation con-
sidered in this paper, the streamline pattern is presented at regular
values of the streamfunction, namely, �=0.1, 0.2, 0.3, …, 1.9 .

6 Results and Discussion
All the figures presented in this section relate to when the light

shaded regions of the channel have Da=10−16, shale, while else-
where, Da=10−10, sand. We first illustrate an investigation of a
situation where the APC technique is employed in both the hori-
zontal and vertical porous regions. This investigation is presented
in Fig. 3, which shows the streamline pattern corresponding to
flow perpendicular to vertical and horizontal barriers of shale,
Da=10−16, which are positioned in the horizontal and vertical sec-
tions, respectively, of the channels that are filled with sand, Da
=10−10. The nondimensional values associated with the vertical
barriers and the horizontal barrier are height 2 and width 0.6 and
height 0.6 and width 1.0, respectively. It is observed from Fig. 3
that as the fluid passes through the barriers then its velocity be-
comes more uniform, decreasing in the central region of the chan-
nel but increasing near the walls of the channel, as indicated by
the widening of the streamlines across the barriers. However,
since Da=10−10 elsewhere in the channel then the streamlines in
these regions are observed to be contracting toward the axis of
symmetry where the fluid velocity is increasing.

In addition, Fig. 4 shows the variation of the pressure along the

axis of the three channels in Fig. 3, namely, �a� the inlet, �b� the
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vertical, and �c� the outlet, channels. Figure 4 illustrates the large
drop of the pressure as the fluid crosses the low permeable barri-
ers of shale Da=10−16, which results in a very slow rate of con-
vergence of the iteration procedure. However, the use of the APC
technique across these barriers rapidly builds up the large pressure
drop and hence improves the rate of convergence of the CVM. In
particular, Fig. 5�a� shows the convergence history for the mass
residual Rmass as a function of the number of iterations in the
CVM both with and without the use of the APC technique in the
configuration shown in Fig. 3, where in the barriers Da=10−16,
while elsewhere Da=10−10. It is observed that without the use of
the APC technique then with these small values of Da in which
the ratio of the smallest to the largest Da is small, namely, 10−6,
the value of Rmass is not reduced and still remains at a value of
about 1.0 even after 20,000 iterations. Hence, clearly in this case

Fig. 3 The streamlines where the light shaded regions have
Da=10−16, shale, while elsewhere Da=10−10, sand. The nondi-
mensional values associated with the two vertical barriers, po-
sitioned in the regions 1.3<x<1.9 and 4.7<x<5.3, respectively,
are height 2 and width 0.6, while the values associated with the
horizontal barrier positioned in the region 3.1<y<3.7 are height
0.6 and width 1.0

Fig. 4 The variation of the nondimensional fluid pressure
along the axis of the three channels, namely, „a… the inlet, „b…

the vertical, and „c… the outlet, channels, see Fig. 3
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we cannot expect that the value of Rmass will satisfy the conver-
gence criterion within a reasonable number of iterations. How-
ever, when using the APC technique to correct the pressure drops
across the barriers of shale Da=10−16, we observe that the value
of Rmass decreases rapidly as the number of iterations increases,
such that after about 11,970 iterations Rmass=1.0�10−4. Further-
more, in order to illustrate a situation for the configuration shown
in Fig. 3 where the value of Rmass decreases as the number of
iterations increases, both with and without the use of the APC
technique, then the ratio of the smallest to the largest Da has to be
increased, say to 10−4, i.e., now the barriers in Fig. 3 have Da
=10−14, while elsewhere Da=10−10. The results obtained are pre-
sented in Fig. 5�b� where it is clearly observed that the APC
technique rapidly builds up the pressure drops across the barriers
of Da=10−14, with Rmass decreasing rapidly as the number of it-
erations increases, such that after about 9280 iterations Rmass
=1.0�10−4. While without employing the APC technique then it
requires about 11,672 iterations for the value of Rmass to reach a
value 1.0�10−1 and more than 44,867 iterations for it to reach
1.0�10−4. Thus, we conclude that the rate of convergence of the
CVM has been significantly improved by adopting the APC tech-
nique.

We next illustrate the use of the APC technique on various
geometrical configurations of the composite channel shown in
Fig. 1, where all the investigations are related to changes in the
flow patterns that occur in the vertical channel which physically
can be considered as a fault/fracture region. While the inlet and
outlet channels are composed of two outer layers of shale Da

−16

Fig. 5 The convergence history for the mass residual Rmass as
a function of number of iterations in the CVM with the APC,
„−Ã−…, and without the APC, „-o-…, for the configuration shown
in Fig. 3, where in „a… the light shaded regions have Da=10−16,
while elsewhere Da=10−10, and „b… the light shaded regions
have Da=10−14, while elsewhere Da=10−10
=10 of thickness 0.5 on their upper and lower impermeable

38 / Vol. 73, JANUARY 2006
surfaces, together with an inner core of sand Da=10−10, of height
1.0, since such a layered system is a more physically realistic
representation of the geological structures in the field. In addition,
in all the following investigations, we present situations where the
horizontal layers from the inlet and outlet channels are linked with
some barriers from the vertical channel, since such configurations
incorporate physically the geological features of both faults and
fractures.

Initially, we consider a geological situation where there exists
some complete irregular restriction on the flow in the vertical fault
region. This physical configuration is modeled in Fig. 6 by posi-
tioning a uniform vertical barrier of shale Da=10−16 of width 0.2,
and height the same as that of the vertical channel so as to link
with the upper and lower layers from the inlet and outlet channels,
respectively. The streamline pattern presented in Fig. 6 shows that
most of the fluid finds an easy passage through the gaps of sand
Da=10−10 between the vertical barrier and the horizontal layers so
as to flow across the barrier in an almost uniform manner.

As the contours of constant pressure across the layers in the
inlet and outlet channels, apart from at their entrances and exits,
are vertical and equally spaced, they are not presented in the
present case, or for any of the other situations investigated in this
paper. Furthermore, the APC technique is not required to be em-
ployed in either of the channels. However, since all the investiga-
tions in this paper relate to changes that occur in the vertical
channel then the pressure contours in the vertical channel, which
show much greater variations depending on the different struc-
tures, are presented in Fig. 7. Therefore, as shown in Fig. 7�a�,
there is a large increase in the overall pressure gradient across the
central region of the vertical barrier of shale Da=10−16 in order to
ensure the same flux of fluid through the channel. Although there
are large horizontal pressure gradients across the vertical barrier
Da=10−16, the magnitude of the fluid velocity is much reduced
compared to that in the regions of sand Da=10−10. In addition, a
relatively small vertical pressure gradient ensures a substantial
flow is observed in the vertical direction either side of the barrier
where sand is present. The situation presented in Fig. 6 shows the
use of the APC technique across the barrier in the vertical channel
where the technique rapidly builds up the pressure drop across the
barrier. The APC formula �19� has been implemented with Da1
=Da2=10−16, S1=7, S2=0, and 
l1=
l2=0.2.

In the next investigation, the geological feature of flow being

Fig. 6 The streamlines where the light shaded regions have
Da=10−16, shale, while elsewhere Da=10−10, sand, and the non-
dimensional values associated with the vertical barrier posi-
tioned in the region 3.4<x<3.6 are height 7 and width 0.2
restricted by a barrier in the vertical direction, as presented in Fig.
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6, is incorporated with the presence of an additional irregular
restricted region which can occur in the horizontal direction of the
fault region. This physical situation is modeled similarly to that
shown in Fig. 6, but with the presence of a uniform horizontal
barrier of sand Da=10−16, of height 0.2, and of width the same as
that of the vertical channel, namely, 1.0. The idealized model,
corresponding to both vertical and horizontal barriers in the fault/
fracture region of the geological structure, is presented in Fig. 8.
Clearly, the streamline pattern illustrated in Fig. 8 is similar to that
presented in Fig. 6, except in the region where the horizontal and
vertical barriers of shale Da=10−16, intersect where it can be ob-
served that the fluid velocity is forced to be almost uniform. Fig-
ure 7�b� shows that for the same flux of fluid much larger values
of vertical and horizontal pressure gradients are required across
the horizontal and vertical barriers, respectively. Although Da
=10−10 in the vertical direction either side of the barrier, a rela-
tively small vertical pressure gradient ensures that fluid flows
much easier in that direction compared to elsewhere. In addition,
due to the presence of the horizontal barrier, the magnitude of the
pressure contours above the horizontal barrier are approximately
ten times greater than those in Fig. 7�a� at similar locations.

Figure 8 demonstrates a situation where the APC technique has
successfully been employed across a combination of vertical and

Fig. 7 The pressure contours in the vertical channels which
correspond to: „a… Fig. 6, where there is a vertical barrier of
height 7, width 0.2 and positioned in the region 3.4<x<3.4, „b…
Fig. 8, where there are vertical and horizontal barriers of
heights 7 and 0.2, widths 0.2 and 1.0, respectively, and posi-
tioned in the region 3.4<x<3.4 and 3.2<y<3.4, respectively,
and „c… Fig. 9, where there are two thin vertical barriers each of
height 4.5, width 0.1, and at a distance 0.2 apart, and positioned
in the region 3.3<x<3.4 and 3.5<x<3.6, respectively. All the
barriers have Da=10−16, shale, while elsewhere Da=10−10, sand,
and the values of the pressure presented are scaled by a factor
1012.
horizontal barriers. In particular, due to the large rapid pressure
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drops across these barriers then a very slow rate of convergence
would have been achieved, and an excessively large number of
iterations would have been required without the use of the APC
technique. However, employing this technique has resulted in a
quick buildup of the pressure drops across the barriers and hence
enabled the global mass conservation to be satisfied extremely
rapidly.

The following investigation is concerned with a physical situa-
tion where within the fault region there still exists a clear passage
from the inlet channel to the outlet channel, but the cross-sectional
area within which such a flow can occur is substantially reduced.
In addition, other regions are present in which the fluid can easily
flow, recirculating if necessary, provided that the fluid can pass
through at least one, and probably more, region of low permeabil-
ity. This physical configuration is modeled in Fig. 9 by connecting
the horizontal layers from the inlet and outlet channels to two thin
vertical barriers, which are of height 4.5, width 0.1, and at a
distance 0.2 apart. Hence, we consider in Fig. 9 the fluid flow
through a restricted central passageway within the vertical chan-
nel. The streamlines in this figure indicate that the fluid avoids the
horizontal barriers that are present in the vertical channel and
distributes itself almost uniformly between the two vertical barri-
ers and between these barriers and the walls of the channel. Al-
though both the vertical and horizontal barriers consist of the
same low permeable porous material, namely, shale Da=10−16,
the thicknesses of the horizontal layers, namely, 0.5, are much
greater than those of the vertical barriers, namely, 0.1. As a result
of having these thin vertical barriers then the horizontal pressure
gradients necessary to force the fluid from the entrance channel
into the sand region to the right of the second vertical barrier, and
from the sand region to the left of the first vertical barrier into the
exit channel, are only of the same order of magnitude as the
vertical pressure gradients necessary to ensure the flow through
the restricted cross section. Hence the fluid flows relatively easily
down the whole region of the vertical channel. This result is also
confirmed from an inspection of Fig. 7�c�, which shows almost
uniform horizontal contours of constant pressure across the central
region. In addition, although somewhat larger vertical pressure

Fig. 8 The streamlines where the light shaded regions have
Da=10−16, shale, while elsewhere Da=10−10, sand, and the non-
dimensional values associated with the vertical barrier, posi-
tioned in the region 3.4<x<3.6, are height 7 and width 0.2,
while the nondimensional values associated with the horizontal
barrier, positioned in the region 3.2<y<3.4, are height 1.0 and
width 0.2
gradients exist across the horizontal barriers compared to across
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the vertical barriers, there is no flow across the horizontal barriers
as a result of their greater thickness compared with that of the
vertical barriers.

Thus, the configuration in Fig. 9 illustrates a situation where the
APC technique is employed across two vertical barriers. In par-
ticular, for the first barrier the APC formula �19� is implemented
with Da1=10−16, Da2=10−10, Da3=10−16, S1=5.5, S2=1.0, S3
=0.5, and 
l1=
l2=
l3=0.1, and similarly for the second barrier.
Although, in this situation the resulting pressure field in Fig. 7�c�
shows no rapid pressure drops, which indicates that the applica-
tion of the APC technique may not be necessary. Unfortunately,
this fact is only available once the problem has been solved. How-
ever, with the inclusion of the technique then the rate of conver-
gence has been improved such that it has been found that by
employing the technique, the CPU time is reduced from approxi-
mately two days to approximately one hour. Hence, it can be
concluded from this investigation that the APC technique can still
improve the rate of convergence even where the geometrical
changes of the porous media do not result in rapid pressure drops.

In general, it has been found that the CPU time required for the
solution of the Brinkman Eq. �4� in all the above numerical inves-
tigations when the APC technique is employed for these physi-
cally realistic values of Darcy numbers, namely, Da=10−16 and
Da=10−10, is approximately 3% of the CPU time consumed when
solving Eq. �4� without using the APC technique. In addition, the
convergence histories for the mass residual Rmass as a function of
number of iterations, both with and without employing the APC
technique, shows a similar behavior to that presented in Fig. 5�a�,
where without employing the APC technique in the CVM of these
investigations then an excessively large number of iterations are
required in order to satisfy the convergence criterion, while with
the use of the APC technique the convergence criterion is satisfied
within a reasonable number of iterations.

To summarize, it can be concluded from all the numerical in-
vestigations presented in this section that the APC technique can
be effectively employed to all the situations that are related to a
horizontal and vertical fluid flow across an arbitrary vertical and
horizontal porous media, respectively, of any thickness and com-
posed of any number of the Darcy numbers Da, see Figs. 3, 6, and
9. In addition, it can also be employed to situations where the fluid
flows across regions of a combined vertical and horizontal porous

Fig. 9 The streamlines where the light shaded regions have
Da=10−16, shale, while elsewhere Da=10−10, sand, and the non-
dimensional values associated with the two thin vertical barri-
ers, positioned in the regions 3.3<x<3.4 and 3.5<x<3.6, re-
spectively, are height 5.5, width 0.1, and at a distance 0.2 apart
media, see Fig. 8.
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7 Conclusions
In this paper, some real physical values of the permeability k

have been considered in solving fluid flow through composite
channels that incorporate geological features of both faults and
fractures.

A difficulty arises in securing a converged solution when the
ratio of the lowest permeability to the highest permeability of the
natural materials in different media is very small, namely, less
than about 10−3. This is due to large and rapid pressure drops as a
result of the flow through the changing media. Therefore, the av-
erage pressure correction �APC� technique, which was developed
by Wen and Ingham �10� for flow through a thin paper filter, has
been extended in order to build up the large pressure drops that
occur due to large variations in the permeability of the media
within several geometrical configurations of the composite chan-
nels. Such configurations are related to horizontal or vertical flows
across arbitrary thick vertical or horizontal porous media, respec-
tively, composed of any number of Darcy parameters. Thus, the
inclusion of the APC technique in the CVM has successfully led
to a substantial enhancement in the rate of convergence of the
iterative scheme.

In addition, the APC technique has been employed on several
numerical investigations which have added a better understanding
of the general flow processes that can occur in different geological
structures of a composite channel. In all the investigations pre-
sented, it has been clearly demonstrated that the APC technique,
which is based on global mass conservation, can rapidly build up
the large pressure drop whenever employed and hence the global
mass conservation is satisfied extremely rapidly. Furthermore, the
examples relating to flows across both horizontal and vertical
single barriers consisting of porous materials where the ratio of
the values of Da differ by O�10−6�, see Sec. 6, can provide useful
benchmark solutions for future researchers when developing
codes for more complex situations.

On the other hand, most of the investigations presented in this
paper are related to changes in the flow patterns that occur within
a vertical channel, which has been considered as a fault/fracture
region. The results obtained have established that a high pressure
gradient in a particular direction, for example, across the barriers,
does not neccessarily indicate large fluid velocities in that direc-
tion. Instead, it all depends on both the value of the permeability
and the dimension of the porous medium, a feature which has
been discussed in all the investigations.
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Upscaling Fractured
Heterogeneous Media:
Permeability and Mass
Exchange Coefficient
In order to optimize oil recuperation, to secure waste storage, CO2 sequestration and
describe more precisely many environmental problems in the underground, we need to
improve some homogenization methods that calculate petrophysical parameters. In this
paper, we discuss the upscaling of fluid transport equations in fractured heterogeneous
media consisting of the fractures themselves and a heterogeneous porous matrix. Our
goal is to estimate precisely the fluid flow parameters like permeability and fracture/
matrix exchange coefficient at large scale. Two approaches are possible. The first ap-
proach consists in calculating the large-scale equivalent properties in one upscaling step,
starting with a single continuum flow model at the local scale. The second approach is to
perform upscaling in two sequential steps: first, calculate the equivalent properties at an
intermediate scale called the ”unit scale,” and, second, average the flow equations up to
the large scale. We have implemented the two approaches and applied them to randomly
distributed fractured systems. The results allowed us to obtain valuable information in
terms of sizes of representative elementary volume associated to a given fracture
distribution. �DOI: 10.1115/1.1991864�
Introduction
Many industrial and environmental problems involve flow in

fractured porous media, like oil production, nuclear waste storage,
and groundwater pollution. In this paper, we start from a fractured
reservoir model as described by a geologist �Long et al. �1�, Le
Ravalec et al. �2��. We focus our study on the flow description at
the scale of a grid-block in a numerical model �large scale�. In this
paper, we consider only characteristics associated with one-phase
flow, such as the fracture permeability and fracture/matrix ex-
change coefficient.

We distinguish three scales illustrated in Fig. 1: �i� the local-
scale characteristic of the fracture aperture; �ii� an intermediate
scale called unit scale; and �iii� the large scale of the reservoir
model also called a block scale. To describe the flow at the block
scale, we have two main possible approaches. We present two
approaches we have developed to identify large-scale parameters.
The first approach consists of upscaling in one step �direct upscal-
ing� from the local scale to the block scale and the second ap-
proach involves two stages �sequential upscaling� through the in-
termediate unit scale. We assume that the flow at the local scale is
described by a simple Darcy-type equation. We also assume that
the flow at the unit scale is described by a system of matrix-
fracture equations according to the dual continuum model of
Barenblatt and Zheltov �3�. This model was further developed by
Warren and Root �4�, and by many other contributors, e.g., Lough
and Kamath �5� Quintard and Whitaker �6� In this paper, we use
the general formulation developed theoretically by Quintard and
Whitaker �6�
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�mcm

�

�t
�Pm�m = �� 1

�
Kmm . ��Pm�m +

1

�
Kmf . ��Pf� f� −

�

�
��Pm�m

− �Pf� f� �1�

� fcf

�

�t
�Pf� f = �� 1

�
K fm . ��Pm�m +

1

�
K f f . ��Pf� f�

−
�

�
��Pf� f − �Pm�m� �2�

In this dual medium model, the first equation describes matrix
flow, the second describes fracture flow, and the term with � mod-
els the fluid exchange between the matrix and fracture systems
�Noetinger and Estébenet �7�, Bourbiaux et al. �8��. Without going
into details, let us emphasize that the upscaling from the unit scale
to the block scale or the direct upscaling, may lead to �two� dif-
ferent classes of flow equations. If conditions are such that a
single continuum model is valid, we only need to identify the
equivalent permeability and the equivalent compressibility. But if
a mechanical nonequilibrium model is required at the large scale,
for instance in the form of a large-scale dual medium model simi-
lar to the one described by Eqs. �1� and �2�, we need to identify a
large-scale parameters that will be denoted by Kf f*, Kmm*, �*.

Direct Upscaling From the Local-Scale to the Block-
Scale

By using the standard laboratory flow configuration, an im-
posed pressure drop and no flow boundaries called permeameter
boundary conditions; we have developed an algorithm to calculate
the full permeability tensor of heterogeneous anisotropic media or
fractured systems �9�. For more details, by simulating a flow along
the ox direction �resp. oy� for a square porous medium of dimen-

sion L�L, the permeameter boundary conditions take this form
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u

Fig. 2 This figure shows the faces quotation us
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	�px,x = constant



�yy

n . K . �px,y=0,L = 0 ��Flow along the ox direction� �3�

	�py,y = constant



�xx

n . K . �px=0,L,y = 0 ��Flow along the oy direction� �4�

Where px,y=0,L �resp. px=0,L,y� means the pressure calculated at the
�yy �resp. �xx� faces for an imposed pressure gradient at the ox
axis �resp. oy� quoted �px,x �resp. �py,y�. Where �yy is perpen-
dicular to the oy axis and �xx is perpendicular to the ox axis �see
Fig. 2�. For a flow along the ox direction �resp. oy�, the pressure
on the impermeable edge will generate a transverse viscous force
��p /�y�x �resp. ��p /�x�y� measurable numerically and experimen-
tally. By measuring this additional information coupled to the
fluxes measured on the ox, oy directions, we can calculate the full
permeability tensor of the heterogeneous porous media

kxx =

qxx − qyy

�xy

L
� �p

�y


x

1 −� �p

�x


y

� �p

�y


x

; kyy =

qyy − qxx

�yx

L
� �p

�x


y

1 −� �p

�x


y

� �p

�y


x

�5�
Fig. 1 Two different up-scaling paths: „I… Direct upscaling from
the local-scale „dx… to the block-scale „Lb…, and „II… Up-scaling
in two stages passing through the intermediate unit-scale„l …
ed in this paper for a square porous medium
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kxy = − � �p

�x


y

kxx +
�xy

L
qyy ; kyx = − � �p

�y


y

kyy +
�yx

L
qxx �6�

Where �yx �resp.�xy� corresponds to the difference between the
two flow barycentre at the outlet edge and the inlet edge of the
sample for a flow imposed according to ox �respectively oy�.

In Fig. 3 �top, left�, we show a lognormal permeability map
�kg=121 Darcy; �2=2� generated with the stochastic code FFTMA

�2�. Locally, the permeability is isotropic �scalar�, but its correla-
tion function �or variogram� is anisotropic. Here, it has an orien-
tation of 44.46° with respect to the horizontal axis. Also we
present in the same figure �Fig. 3, top, right� the pressure varia-
tions at the impermeable edges for a horizontal confined flow for
the real medium and its anisotropic homogeneous equivalent me-
dium determined by using the method in Ref. �9� and shortly
described in this paper. In addition, we show, respectively, the
pressure maps for the real medium �Fig. 3, bottom, left� and its
equivalent medium �Fig. 3, bottom, right�. For these calculations,
the effective permeability tensor for the researched equivalent me-
dium provided by this method is

K = �122.05 58.08

58.08 119.86
� �7�

The eigenvalues of this tensor are: kxx� =179.05, kyy� =62.86. The
principal axes have an orientation of 44.46° with respect to the
direction of the imposed flow.

Also, we have developed a numerical solver based on a two-
dimensional �2D� finite volume scheme with a five point stencil
for the “closure problems” presented in Quintard and Whitaker �6�
Landereau et al. �10� which give all the required permeability
tensors and the matrix-fracture exchange coefficient at the differ-
ent large scales �unit scale or block scale�. The flow is described
by a dual continuum model. In Fig. 4, we show a zoom of a
fractured porous media studied in this paper. The volume fraction
of the 26,538 fractures present in the medium is around 9%, and
the ratio of fracture permeability to matrix permeability at local-
scale is around 1000. At local scale, we build a fine grid with
2048�2048 cells. We then choose to partition the domain into
units of different sizes, leading to several possible partitions �4
�4 units, 8�8 units, 16�16 units, and 32�32 units�. For each

Fig. 3 Lognormal permeability map „Darcy… generated using
FFTMA for 200Ã200 cells „at left… and the pressure „bar… evolu-
tion at the impermeable edges for a horizontal confined flow for
the real medium and its anisotropic homogeneous equivalent
„at right…. At bottom, pressure maps for the real medium „at left…
and its equivalent homogeneous medium „at right….
partition, we have calculated a map of the matrix-fracture ex-
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change coefficient � and of the first principal component of the
equivalent permeability tensor KEQ

XX , and we have plotted their
histograms in Fig. 4. The histogram for � shows a classical nor-
mal shape for all unit-scale partition. The results for KEQ

XX show a
more complicated structure. For fine unit-scale partition, we ob-
serve a bimodal histogram with a group of low values correspond-
ing to nonpercolating units. This bimodal structure disappears for
unit size “sufficiently” large. This word “sufficiently” will be as-
sociated in the discussion at the end of this paper to the size of a
representative elementary volume �REV�, important notion for
practical applications.

Sequential Upscaling in Two Stages Through the
Intermediate Unit-Scale

Once the permeability and the matrix/fracture exchange coeffi-
cient distributions �maps� are known at the intermediate scale of
the “units,” further averaging is required to obtain the flow behav-
ior at the block scale. We have formulated a dual continuum
model at the block scale starting from the Barenblatt et al. �3�
model at the unit scale. We have obtained two systems of dual
continuum equations in the matrix and fractured regions for aver-

aged pressure �Pm or Pf� and for pressure deviations �P̃m or P̃f�.
Without going into details, the equivalent permeability for the
fractured region is obtained by solving the closure problem de-
scribed below

p̃f = b f · �P f �8�

0 = ��K f f · �b f� + � · K f f �9�

b f�x + li� = b f�x� �10�

�b f� = 0 �11�

K f f
* = �K f f� + �K f f · �b f� �12�

which is reminiscent of classical equations obtained for diffusion
problem with heterogeneous diffusion coefficients �Saez et al.
�11�, Bourgeat et al. �12� Quintard and Whitaker �13��. We applied
those formulas to the permeability map obtained at the unit scale
for each partition of the block �see Fig. 4�. The equivalent perme-
ability of the fracture network is presented in Fig. 5 as a function
of the unit size lu. Our upscaled permeability called the “double
scale” is compared to that obtained by using the Cardwell and
Parsons �14� technique, Ababou �15� approach, Renard et al. �16�
method. These results will be discussed below.

The determination of a large-scale mass exchange coefficient
from the mapped � is not a trivial matter. Our approach is based
on direct numerical simulation of the dual medium model at the
unit scale and interpretation of the resulting block-scale fields. We
studied the case Km�� fKf. We have shown by numerical simu-
lations that, when the exchange coefficient is large enough, the
fracture pressure diffusion flux is negligible compared to the ex-
change flux. More precisely, this occurs when ��lu

2 /Kf 	1. Our
simulation tests show that the asymptotic upscaled exchange co-
efficient � is the harmonic mean of the local coefficient �*. On the
other hand, when the exchange coefficient is small enough, the
fracture pressure gradient becomes negligible because there is a
strong diffusion which tends to homogenize the fracture pressure
in space. More precisely, this occurs when ��lu

2 /Kf �1. Our
simulation tests show that the asymptotic upscaled exchange co-
efficient � is the minimum of the local coefficient �. Similar
results were obtained with a stochastic method presented in the

paper by Kfoury et al. �17�.
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KEQ of equivalent permeability „right….
Representative Elementary Volume
While the choice of the block size by reservoir engineers is not

in general truly determined by scientific considerations based on a
detailed analysis of the lower-scale properties, it may be a safe
engineering practice to have the block size a little bit larger than
the spatial correlation length �or REV size� of the heterogeneous
field under consideration within the grid block. The sequential
upscaling technique presented in this paper offers some informa-
tion about this important aspect. This is illustrated in Fig. 5. Re-
sults for lu
1/8m are close to those obtained directly with a fine
gridding of the Darcy-scale geometry. This result can also be con-
firmed by looking at the unit-scale repartition of Kff. This is
shown in Fig. 6 that represents the different values of Kf f as a
function of � f, for each unit. We observe two populations, the one
with a very low permeability being associated with nonpercolating
fractures. We see that this nonpercolating cloud disappears for lu

1/16m, which is compatible with the REV size estimated from
Fig. 5. The REV size can also be analyzed by looking at the
distribution of �. Figure 7 represents the evolution of the arith-

Fig. 4 Above: example of a fractured porous medium used in
exchange coefficient � „left…, and histogram of first component
this work „200Ã200 cells…. Below: histogram of matrix-fracture
XX
metic and harmonic mean of �, with respect to the unit-size lu. We

44 / Vol. 73, JANUARY 2006
Fig. 5 First component of the equivalent permeability for a
xx 2
fracture network at the block-scale „kff ,m …
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remind the reader that these two values represent the two limiting
behaviors of the system. We observe that the evolution of these
two values is relatively small for lu
1/8m. This characteristic
REV length scale is compatible with the estimate obtained from
the analysis of the fracture permeability.

Conclusions
Direct and sequential approaches to upscaling flow properties in

fractured heterogeneous porous media have been presented. Dif-
ferent methods to optimize the calculation of petrophysical param-
eters have been developed. We find that the idea of sequential
upscaling in two steps is interesting in terms of computer effort
�CPU time calculation� and of REV information.
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Nomenclature
b f � Vector that map �Pf onto p̃f in the new double

continuum model at the block-scale, m
cf � Total compressibility in the fracture region,

Pa−1

cm � Total compressibility in the matrix region, Pa−1

Kg � Geometric average of the permeability distribu-
tion, Darcy

Fig. 6 Sequential upscaling: First component of fracture net-
work permeability in each cell at the unit-scale for all partitions

Fig. 7 Sequential upscaling: Arithmetic and harmonic values

of exchange coefficient for each partition at the unit scale

Journal of Applied Mechanics
K f � Darcy scale permeability tensor in the fracture
region, m2; 1 Darcy�10−12 m2

Km � Darcy scale permeability tensor in the matrix
region, m2

K f f � Fracture region, unit-scale permeability tensor
in the two-equation model, m2

Kmm � Matrix region, unit-scale permeability tensor in
the two-equation model, m2

Kmf =K fm � Unit-scale cross-effect permeability tensor in
the two-equation model, m2

K f f
* � Fracture region, block-scale permeability ten-

sor, m2

Kmm
* � Matrix region, block-scale permeability tensor,

m2

lu � Unit size, m
�Pf� f � Intrinsic macroscopic pressure for the fracture

region, Pa
�Pm�m � Intrinsic macroscopic pressure for the matrix

region, Pa

P̃f � Large-scale pressure deviation associated with
the fracture region, Pa

P f � Superficial regional average pressure for the
fracture region, Pa

q � Flux, m2

V� � Large-scale averaging volume, m3

Vf � Volume of the fractured region contained
within V�, m3

Vm � Volume of the matrix region contained within
V�, m3

� � Exchange coefficient at the unit scale
�* � Exchange coefficient at the block scale

� f =Vf /V� � Volume fraction of the fracture region con-
tained in the averaging volume

�m=Vm /V� � Volume fraction of the matrix region contained
in the averaging volume

�2 � Variance of the permeability distribution
� � dynamic viscosity, N s/m2
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Modeling of Heat Transfer in a
Moving Packed Bed: Case of
the Preheater in Nickel
Carbonyl Process
Heat transfer in a two-dimensional moving packed bed consisting of pellets surrounded
by a gaseous atmosphere is numerically investigated. The governing equations are for-
mulated based on the volume averaging method. A two-equation model, representing the
solid and gas phases separately, and a one-equation model, representing both the solid
and gas phases, are considered. The models take the form of partial differential equations
with a set of boundary conditions, some of which were determined experimentally, and
design parameters in addition to the operating conditions. We examine and discuss the
parameters in order to reduce temperature differences from pellet to pellet. The calcula-
tion results show that by adopting a constant temperature along the preheater outer wall
and decreasing the velocity of the pellets in the preheater, the difference in temperature
from pellet to pellet is reduced from �120 °C to �55 °C, and the thermal efficiency of
the preheater is tremendously improved. �DOI: 10.1115/1.1991862�
Introduction
Porous media are utilized in many industrial processes as an

effective means for the transport and storage of heat energy. Ex-
amples of industrial and practical applications include heaters,
dryers, cooling units, exchangers, and biological tissue �1–5�. The
study of heat transfer in processes based on packed beds is impor-
tant for a better understanding of the operation of the process unit
and its efficient design. Therefore, there has been a continuing
interest in and a huge amount of literature exists on this subject
�e.g., see �6–10��. Most of the studies on packed beds involve the
flow of the fluid phase through a fixed solid bed, and a few only
deal with moving beds. Experimental investigations of heat trans-
port in moving packed beds are usually difficult to carry out due
to limited access into the inside of the packed bed, and to operat-
ing conditions that very often are not ideal for experimentation,
e.g., high temperature and pressure. Even when possible, experi-
ments are generally carried out in small, cost-intensive setups, and
the results are scaled up to the size of the real process. Numerical
modeling is used as a complementary and sometimes as the sole
means to gain a better understanding of the phenomena taking
place in a packed bed.

A rigorous approach for investigating transport phenomena in
porous media is through the use of the volume averaging tech-
nique �11–13�. The latter can be implemented by means of two
approaches: The first one is via averaging over a representative
elementary volume containing both the fluid and solid phases �re-
ferred to as the one-equation model�, and the second one is via
averaging separately over each of the phases, thus resulting in a
separate energy equation for each individual phase �referred to as
the two-equation model�. The one-equation model is valid when
the temperature difference between the solid and fluid phases is

1To whom correspondence should be addressed.
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negligible, and is practical for comparison purposes with experi-
mental data as temperature measurements in a packed bed do not
distinguish between solid and fluid phase temperatures. The two-
equation model is used when thermal exchange between the two
phases is not effective �14�, and allows for a better understanding
of the interactions between the two phases. In the two-equation
model the two energy equations, accounting for heat transfer in
the solid and gas phases making up the bed, are coupled by a flux
that depends on an energy exchange coefficient and the difference
between the temperatures in the two phases.

In the present work, the thermal performance of the preheater in
the industrial carbonyl process �15� �Fig. 1� is numerically inves-
tigated. The preheater is essentially a tube-and-shell heat ex-
changer, with the moving packed bed of nickel pellets in a stag-
nant carbon monoxide atmosphere composing the “tube” side,
while hot flue gases make up the “shell” side. After leaving the
preheater, the pellets enter a cold-wall reaction zone where coat-
ings of nickel are deposited onto the pellets. Inefficiencies in heat
transfer in the preheater can result in poor nickel decomposition
later on in the reaction zone, for nickel deposition rate is very
sensitive to pellet temperature as the process is diffusion con-
trolled �16�. The primary goal of the work is to arrive at solving
the issue of the large differences in temperature from pellet to
pellet in the industrial preheater. A parametric study of several
variables is conducted in order to analyze heat transfer in the
preheater in an attempt to optimize the overall process. Both one-
equation and two-equation models are used and the corresponding
results are compared.

Matehmatical Modeling
Figure 2 depicts a detailed schematic diagram of the moving

packed bed under consideration. Heat is transferred from the hot
flue gases to the pellets by convective and conductive heat trans-
port. The pellets are heated up from an entry temperature of
210 °C as they travel down the preheater. In establishing the
model for anlyzing the problem at hand, the following assump-
tions are employed:

• The pellets are randomly distributed, i.e., bed porosity is

assumed to be constant, and their mass flow rate is constant.
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• The fluid is stagnant, i.e., the corresponding convective term
is ignored.

• Variation of thermal, physical and transport properties with
temperature is negligible.

• Heat transfer is two-dimensional.

Based on these assumptions and the two-equation model, the

Fig. 1 Cross-sectional view of the industrial nickel carbonyla-
tion process †15‡

Fig. 2 Schematic diagram of the moving packed bed in the

preheater
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energy equations written in cylindrical coordinates for the solid
and fluid phases are

Solid phase

�sCps

�Ts

�t
+ �sCps

�s� �Ts

�x
� = ks�1

r

�

�r
�r

�Ts

�r
	 +

�2Ts

�x2 �
− � hA

1 − �
��Ts − Tf� �1�

Fluid phase

� fCv
�Tf

�t
= kf�1

r

�

�r
�r

�Tf

�r
	 +

�2Tf

�x2 � +
hA

�
�Ts − Tf� �2�

where ks and kf are the thermal conductivities of the solid and
fluid phases, respectively, Ts��s� and Tf�� f� are the solid and fluid
temperatures �densities�, respectively, Cps and Cv are the heat
capacities of the solid and fluid phases, respectively, vs is the
linear velocity of the solid phase, h is the fluid-to-solid �or inter-
stitial� heat transfer coefficient, A is the surface area per unit vol-
ume of solid, � is the porosity of the packed bed, t is time, and x
and r are the axial and radial coordinates, respectively. The spe-
cific surface area of the packed bed can be expressed in terms of
� and pellet diameter dp as suggested by Dullien �17�

A =
6�1 − ��

dp
. �3�

Data on heat transfer coefficients in moving packed beds are quite
scarce. However, recent studies have shown that, in general, trans-
port coefficients in moving beds are similar in magnitude to those
in a stopped bed �18,19�. In this wok, the interstitial heat transfer
coefficient has been estimated from a correlation based on experi-
mental findings of Wakao et al. �20� for a fluid flowing in a fixed
bed. For the purpose of this study, the Reynolds number �Re�,
with magnitudes �50, has been defined relative to a pellet par-
ticle. Further details are given in the Appendix.

In order to make the problem more tractable, the energy equa-
tions have been non-dimensionalized. Written in dimensionless
form, Eqs. �1� and �2� become

�Ts
*

�t* + cs� �Ts
*

�x* � = ds� 1

r*

�

�r*�r*�Ts
*

�r*	 +
�2Ts

*

�x*2� − gs�Ts
* − Tf

*�

�4�

�Tf
*

�t* = df� 1

r*

�

�r*�r*�Tf
*

�r*	 +
�2Tf

*

�x*2� + gf�Ts
* − Tf

*� �5�

with the following boundary and initial conditions for each phase:

Inlet: A Dirichlet type boundary condition is employed at the pre-
heater inlet

Ts
* = Tf

* = Tinlet
* , x* = 0. �6�

Outlet: The preheater is long enough �L /R=92� so as to neglect
the effect of the inlet, i.e.,

−
�Ts

*

�x* = −
�Tf

*

�x* = 0, x* = 1 �Danckwerts condition� . �7�

Centerline: A symmetry condition is adopted along the preheater
centerline

�Ts
*

�r* =
�Tf

*

�r* = 0, r* = 0. �8�

Inner wall: A mixed type boundary condition is invoked at the
preheater inner wall

−
�Ts

*

* =
hswL

�Ts
* − Tw

* �

�r ks
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−
�Tf

*

�r* =
hfwL

kf
�Tf

* − Tw
* � r* = R/L �9�

where hsw and hfw are the solid-to-wall and fluid-to-wall heat
transfer coefficients, respectively. The latter along with ks have
been estimated from correlations based on theoretical findings of
previously performed studies. The correlations established by
Dixon and Cresswell �21� were found to be suitable for use for the
range of particle Reynolds numbers that were considered in the
present work �see the Appendix�.

Initial conditions

Ts
* = Tso

* , Tf
* = Tfo

* , t* = 0 �10�
with

Tf
* =

Tf

Tw max
, Ts

* =
Ts

Tw max
, r* =

r

L
, x* =

x

L
, t* =

t

to
,

df =
kfto

� fCvL2 , gf =
hAto

� fCv�
, cs =

to�s

L
, ds =

ksto

�sCps
L2 ,

gs =
hAto

�sCps
�1 − ��

where Tso
* and Tfo

* are the initial dimensionless solid and fluid
temperatures, respectively, Tinlet

* is the dimensionless temperature
of the solid and fluid before entering the preheater, L and R are the
preheater tube length and radius, respectively, and to is the resi-
dence time of the pellets in the preheater. The maximum packed-
bed wall temperature is Tw max, and Tw

* is the dimensionless
packed-bed wall temperature determined experimentally as a
function of the distance along the preheater wall as follows:

Tw
* = 0.2058x* + 0.7942. �11�

Equation �11� has been obtained by measuring the temperature at
different points on the outer side of the packed-bed wall, using a
thermocouple whose accuracy is of the order of ±0.5%. Equation
�11� has been used to compute the thermal behavior of the bed
unless otherwise stated. The one-equation model, which does not
distinguish between the solid and fluid phases and assumes a uni-
fied temperature T* takes the form

�T*

�t* + c� �T*

�x* � = d� 1

r*

�

�r*�r*�T*

�r* 	 +
�2T*

�x*2� �12�

with boundary and initial conditions

T* = Tinlet
* , x* = 0 �13�

−
�T*

�x* = 0, x* = 1 �14�

�T*

* = 0, r* = 0 �15�

Table 1 Properties and paramet

Two-Equ

� cs ds gs df gf

0.37 1.00 4.27�10−05 0.47 7.68�10−4 7.40�

One-Equ

� c d

0.37 1.00 4.279�10−05
�r
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−
�T*

�r* =
hwL


k�
�T* − Tw

* �, r* = R/L �16�

where hw is the apparent wall heat transfer coefficient and was
calculated from a correlation in Ref. �21� �see the Appendix�.

T* = To
*, t* = 0 �17�

and

c =
�1 − ���sCps

tov


�Cp�L
, d =


k�to


�Cp�L2 ,


k� = �1 − ��ks + �kf, 
�Cp� = �1 − ���sCps
+ �� fCv

where 
k� and 
�Cp� are the average conductivity and heat capac-
ity between the solid and fluid phases, respectively.

The set of Eqs. �4� and �5� with boundary and initial conditions
�6�–�10�, based on the two-equation model, constitute a complete
set of equations for the moving bed as a function of the diffusion
coefficients ds and df, flow parameter cs, interstitial convection
parameters gs and gf, and preheater aspect ratio R /L. Similarly,
for the one-equation model, Eq. �12� with boundary and initial
conditions �13�–�17� constitute a complete set of equations for the
moving bed as a function of the diffusion coefficient d, flow pa-
rameter c, and preheater aspect ratio R /L. An analytical solution
for the coupled system of partial differential equations, corre-
sponding to the two-equation model, may be difficult to find. Our
initial attempt to analytically solve the one-equation model has so
far proved to be a nontrivial one because of the nature of the
boundary conditions. For their solution, both models with their
proper boundary conditions have been implemented and numeri-
cally solved in Femlab environment �22�. Femlab �Stockholm,
Sweden� provided for the discretization of the equations using a
finite-element scheme, and for the iterative solution of the set of
equations using an implicit ordinary differential equation �ODE�
solver based on the method of lines.

Results and Discussion
Pellets with a d80 size �80% passing� of 9.2 mm have been used

to carry out the numerical runs. The thermal and physical proper-
ties have been evaluated at the average temperature of the packed
bed of 508 K, and some of the properties, such as � and Tw, have
been experimentally determined. Table 1 lists a range of solid and
fluid phase properties along with other parameters that have been
used in this work. These data correspond to the standard process
operating conditions. In order to perform a parametric study of the
preheater performance some of the parameters have been changed
and their new values are given along with the corresponding nu-
merical runs. The mesh, defined in terms of �x* and �r*, was
refined and the integration time step �t* was decreased until the
calculated temperatures have become independent of the discreti-

considered in the investigation

n Model

h hfw hsw L ks kf

19.9 8.78 1.02�104 4.07 19.6 3.81�10−2

n Model

hw L 
k�

171 4.07 12.4
ers

atio

103

atio
sation parameters.
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Two-Equation Model. The space distribution of the solid
phase temperature, under the standard process conditions and at
t*=1, is depicted in Fig. 3. It can be noticed that temperature
gradients exist in both axial and radial directions of the preheater.
The transient temperature behavior along the packed bed and at its
outlet is shown in Figs. 4�a� and 4�b�, respectively. The pellet
temperature progressively reaches steady-state throughout the
packed bed, as shown in Fig. 4�a�, except near the bed outlet. The
temperature of the pellets as they are about to leave the preheater
is smallest near the preheater center and largest near its wall, as
illustrated in Fig. 4�b�. The relative temperature difference at t*

=1 is �Ts
*� 16%, which translates into a maximum absolute dif-

ference of �Ts�120 K between pellets near the center and at the
wall of the preheater. The magnitude of �Ts

* at the preheater outlet
reflects the degree of discrepancy in temperature from pellet to
pellet as pellets are about to enter the cold-wall reaction zone.
Reducing the temperature difference between pellets is crucial and
is further investigated in the next section.

Figure 5 shows the temperature difference between the fluid
and solid phases along the packed bed at r*=0.005. Generally, the
difference is quite small throughout the bed and does not exceed 2
K, except within a region close to the preheater wall �around r*

=0.009� and just after the inlet where the difference can reach
�15 K. There is also a change in the sign of the temperature
difference, corresponding to �−1.25 K, between the two phases
just after the inlet. Although the genuine reason behind the sign
change is not quite clear, it might be due to the abrupt change in
temperature at the entrance.

One-Equation Model. Figure 6 depicts the space distribution
of the temperature of the bed under the standard conditions and at
t*=1. The calculated temperature pattern is very similar to the
pattern obtained using the two-equation model �see Fig. 3�, both
qualitatively and quantitatively. The concordance between the two
models is expected at least from the findings of the two-equation
model, viz., the difference between the temperature profiles of the
solid and fluid phases is quite small as described in the previous
section. The direct assumption associated with the one-equation
model is that of local thermal equilibrium �LTE� whereby the
temperature difference between the two phases is negligible
�13,23–26�. In other studies, LTE has also been found to depend
on process conditions such as the ratio ks /kf, Reynolds number,

Fig. 3 Space distribution of the solid phase dimensionless
temperature in the preheater under standard process condi-
tions and at time t*=1
and convective transport �9,14,27�. Local thermal equilibrium is
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generally met for values of ks /kf ratio approaching unity, at low
values of the Reynolds number, and when convective transport is
not important. In the present study, while the condition on ks /kf
ratio is not met, the latter two are.

In order to improve the preheater performance a parametric
study has been conducted using the one-equation model. From the
practical viewpoint the results obtained after the manipulation of
two parameters, viz., c and Tw

* , are given in the following. Al-
though increasing the magnitude of the parameter d leads to an
improvement in the temperature pattern along the preheater, this
parameter consists of terms that are essentially inherent properties
of the packed bed �e.g., thermal conductivity, density, etc.�.

Wall Temperature. Instead of the decreasing Tw
* , expressed by

Eq. �11�, as the flue gas flows upward along the outer wall of the
preheater, a constant value of Tw

* =1 has been adopted throughout
the preheater wall. The resulting space distribution of the tempera-
ture is shown in Fig. 7�a�. There is a noticeable decrease in the
radial temperature gradient at the preheater outlet where �T*

�8% or �T�60 K. A constant wall temperature can be materi-
alized by altering the direction of the flue gas from parallel to
perpendicular to the preheater, for instance by having the inlets of
the flue gas on one side of the bed and the outlets on the opposite

Fig. 4 Transient dimensionless temperature profiles of the
solid phase along the preheater at position r*=0.005 „a… and at
the preheater outlet, x*=1 „b…. The curves correspond to the
dimensionless time range 0–1 with an increment of 0.1.
side.
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Momentum Term. A decrease in c results in a twofold improve-
ment in the temperature pattern of the packed bed, as shown in
Fig. 7�b� for c=0.1. The temperature difference drops at the pre-
heater outlet, and heat transfer is fostered in the radial direction
throughout the preheater. A small value of c is synonymous with a
slow motion and/or large residence time of the pellets in the pre-
heater. A viable solution would be to keep the mass flow rate
constant, to maintain the same level of productivity of pellets, by
increasing the cross-section of the preheater tube.

Finally, a combination of the previous two approaches yields
the space distribution of the temperature of the packed bed illus-
trated in Fig. 7�c�. As can be noticed from the comparison of the
current results with those of Figs. 7�a� and 7�b�, a drastic im-
provement in radial heat transfer throughout the preheater can be
achieved, and about the same temperature difference at the outlet,
�T�55 K, is reached as depicted in Fig. 8.

Fig. 5 Temperature difference between the fluid and solid
phases along the preheater at position r*=0.005 and time t*=1.
The figure in the inset is a “zoom-in” view of the region near
the preheater inlet.

Fig. 6 Space distribution of the bed dimensionless tempera-
ture in the preheater under standard process conditions and at

*
time t =1

Journal of Applied Mechanics
Fig. 7 Space distribution of the bed dimensionless tempera-
ture in the preheater at time t*=1 and corresponding to Twall

=1 „a…, c=0.1 „b…, and to „a… and „b… combined „c….

JANUARY 2006, Vol. 73 / 51



Conclusions
This paper describes the thermal performance of an industrial

preheater consisting of a moving packed bed of nickel pellets.
Both two- and one-equation models have been used to describe
the transient thermal response of the preheater. The findings show
that there is no appreciable difference between the two models
under the investigated conditions. The calculation results show
that by adopting a constant temperature at the preheater wall, e.g.,
by directing the flue gas perpendicular to the preheater tube and
decreasing the pellet velocity in the packed bed, the thermal effi-
ciency throughout the preheater is tremendously improved, and
the difference in temperature from pellet to pellet at the preheater
outlet is reduced from �120 °C to �55 °C.
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Nomenclature
A � area of nickel pellet surface per unit volume

�m−1�
Cp, Cv � specific heat capacities �J kg−1 K−1�

c � dimensionless convection coefficient
d � dimensionless diffusivity

dp � pellet diameter �m�
g � dimensionless interstitial heat transfer

coefficient
h � effective interstitial heat transfer coefficient

�W m−2 K−1�
k � thermal conductivity �W m−1 K−1�
L � preheater tube length �m�

Pr � Prandtl number �� Cp /kf�
R � preheater tube radius �m�

Re � Reynolds number, ��dp /	�
r � radial direction of preheater tube �m�
T � temperature �K�

Tinlet � inlet temperature �K�

Fig. 8 Temperature profiles of the bed at the preheater outlet
and at time t*=1. The corresponding conditions are indicated in
the inset.
Tso, Tfo � initial temperatures of solid, fluid �K�
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Tw max � maximum preheater wall temperature �K�
t � time �s�

to � residence time of pellets in preheater tube �s�
x � axial direction of preheater tube �m�

Greek symbols
� � linear velocity of the medium �m s−1�
� � increment/difference
� � porosity of the packed bed
� � density of the medium �kg m−3�
� � fluid dynamic viscosity �N s m−2�
	 � fluid kinematic viscosity �m2 s−1�

Subscripts
f � fluid phase
p � particle
s � solid phase

w � preheater wall
sw, fw � solid-to-wall, fluid-to-wall

Superscripts
* � dimensionless quantity

Other symbols

 � � volume average

Appendix

Two-Equation Model
The interstitial h, fluid-to-wall hfw, and solid-to-wall hsw, heat

transfer coefficients have been obtained from the following corre-
lations �20,21�.

h = kf�2 + 1.1Pr
1/3Re

0.6�/dp

hfwdp

kf
= 0.6Pr

1/3Re
1/2

hswdp

ks
= 2.12

The thermal conductivity of the solid phase ks is given by the
following relationship �21�:

ks = 2kf�1 − ��0.5 1

A
�AB

A2 ln� kp

Bkf
� −

B + 1

2
−

B − 1

A


with

A = 1 −
kfB

kp

and

B = 1.25�1 − �

�
�10/9

One-Equation Model
The apparent wall heat transfer coefficient hw was calculated

from the following correlation �21�:

hwdp

kf
= 4
�dp

R
� + �hfwdp

kf
�

where
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� ks

kf

�

� 8ks

AR2h
+

4 +
hswR

ks

hswR

ks

�
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Magnetohydrodynamics-Mixed
Convection From Radiate Vertical
Isothermal Surface Embedded in
a Saturated Porous Media
The magnetohydrodynamics-mixed convection heat transfer problem from a vertical sur-
face embedded in a porous media is studied. The effects of transverse magnetic field and
radiation heat transfer are examined. Both cases of the mixed convection heat transfer
problem, namely: the buoyancy aiding flow and the buoyancy opposing flow are investi-
gated. It is found that three dimensionless groups can describe the problem under con-
sideration, the mixed convection parameter �, the radiation-conduction parameter Rd,
and the magnetic field number Hax

2 /Rex. Different velocity profiles, temperature profiles,
and the local Nusselt number variations are also drawn. �DOI: 10.1115/1.1991863�
Introduction
High-temperature plasmas, cooling of nuclear reactors, liquid

metal fluids, magnetohydrodynamics �MHD� accelerators, and
power generation systems are important applications for radiation
heat transfer from a vertical wall to conductive gray fluids. The
inclusion of radiation effect in the energy equation, however, leads
to a highly nonlinear partial differential equation �1�. Hossain �2�
studied the effects of viscous and Joule heating from vertical sur-
faces with variable wall temperature. Soundalgekar et al. �3� stud-
ied the radiation effects on free convection flow of a gas past a
semi-infinite flat plate using the Cogley-Vincenti-Giles equilib-
rium model. Cogely et al. �4�, Hossain and Takhar �5� analyzed
the effect of radiation using the Rosseland diffusion approxima-
tion on the forced and natural convection flow of an optically
dense fluid from vertical surfaces. Hossain et al. �6� studied the
effect of radiation on natural convection heat transfer. Many prob-
lems of Darcian and non-Darcian mixed convection about a ver-
tical plate and other types of geometries had been reported, as in
Hsu and Cheng �7�, Vafai and Tien �8�, Minkowycz et al. �9�,
Nield �10�, Lai and Kulacki �11�, Hsieh et al. �12�, Aldoss et al.
�13�, and Duwairi et al. �14�.

However, many authors studied the effects of magnetic field on
forced and natural convection heat transfer problems. Among
those, Kafoussias �15� who studied the effect of magnetic field on
free convection through a nonhomogenous porous medium over
an isothermal cone. Gulab and Mishra �16� analyzed the unsteady
magnetohydrodynamic porous medium. Raptis and Kafoussias
�17� studied the effect of the magnetic field on the heat transfer
problem along a vertical wall embedded in saturated porous me-
dium. Takhar and Ram �18� studied the magnetohydrodynamic
free convection flow of water at 4 °C through a porous medium.
Aldoss et al. �19� studied the MHD mixed convection heat trans-
fer problem from vertical surfaces embedded in saturated porous
medium, finally, Duwairi and Damseh �20� analyzed the MHD
natural convection heat transfer from radiate vertical surfaces with
fluid suction or injection. The effects of thermal radiation and

Contributed by the Applied Mechanics Division of ASME for publication in the
AMERICAN SOCIETY OF MECHANICAL E. Manuscript received June 2, 2004; final manu-
script received April 20, 2005. Assoc. Editor: D. Siginer. Discussion on the paper
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied
Mechanics, Department of Mechanical and Environmental Engineering, University
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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magnetic field on natural convection heat transfer from an in-
clined plate embedded in a variable porosity porous medium ana-
lyzed recently by Chamkha et al. �21�.

On the other hand, few works are available in the literature on
the subject of MHD mixed convection flow in porous media, and
the MHD mixed convection for the buoyancy opposing flow had
not been yet addressed.

In this work, the buoyancy aiding or opposing mixed convec-
tion heat transfer form vertical surfaces embedded in porous me-
dia with radiation-conduction interaction is studied. Both the
transverse and induced magnetic field effects are included in the
transformation.

Analysis
Consider a semifinite vertical isothermal plate with uniform

surface temperature subjected to combined natural and forced
convection as shown in Fig. 1. The fluid considered is a gray,
emitting-absorbing but nonscattering medium. We also consider
the influence of a transversely applied magnetic field on such
flow. In the present paper, the variations in fluid properties are
limited only to those density variations which affects the buoy-
ancy term. The radiate heat flux in the x direction is considered
negligible in comparison with that in the y direction. The physical
coordinate x is measured from the leading in the stream wise
direction and y is measured normal to the surface of the plate.
These conditions do not lead to a similar solution of the laminar
boundary-layer equations. Therefore, solutions of the governing
equations are obtained utilizing a nonsimilar approach. Under
boundary-layer approximations, the continuity, momentum, and
energy equations are written as, Kaviany �22�

�u

�x
+

�v
�y

= 0 �1�

�u
�u

�x
+ v

�u

�y
�

�2 +
�

K
�u − u�� +

K�
�K

�u2 − u�
2 � +

�B0
2

�
�u − u��

=

�
�2u

�y2

± g��T − T�� �2�

�
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�cp�u
�T

�x
+ v

�T

�y
� − �B0

2u2 = keff� �2T

�y2� +
�

�y
� 16a

3�R
T3�T

�y
� �3�

Note that the momentum equation includes both the macroscopic
and microscopic inertial forces with the effect of the damping
shear stress near the isothermal wall being considered. Also the
momentum equation includes a magnetic influence term. The sec-
ond term on the right-hand side of the energy equation represents
the radiation heat transfer effects of an optically thick fluid as
described by Ali et al. �23�, and the second term on the left-hand
side represents the Joule heating effects. In the above system of
partial differential equations a is the Stefan-Boltzmann constant
and �R is the Rosseland mean absorption coefficient. There is an
interesting aspect involving magnetohydrodynamic effects in
mixed convection boundary layers, that is the induced magnetic
forces modify the free stream flow, and this in turn affects the
external pressure gradient or the free stream velocity which is
imposed in the boundary layer. Thus a complete boundary-layer
solution would involve a magnetohydrodynamic solution for the
inviscid free stream.

−
1

�

�p

�x
= ± g��T − T�� −

�

K
u� −

K�
�K

u�
2 +

�B0
2

�
u� �4�

The boundary conditions for the problem under consideration are

Table 1 Comparison between the Nux / �Rex calculated by the p
and Hart †26‡. The values of � and Nux / �Pex presented in this
definitions as in Oosthuizen and Hart.

A

� Pr=0.7

Present method Duwairi and Damseh Oosthuizen and H
0.1 0.31112 0.31120 0.32001
0.5 0.36511 0.36501 0.35502
1 0.39628 0.39745 0.40506

Opp

� Pr=0.1

Present method Duwairi and Damseh Oosthuizen and H
0.01 0.15105 0.15020 0.14022
0.05 0.14003 0.14035 0.13980
0.1 0.10777 0.10867 0.11765

Fig. 1 Flow model and coordinate system
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y = 0, u = 0, v = 0, T = Tw

�5�
y → �, u = u�, T = T�

In order to satisfy continuity equation, define u=�	 /�y, v
=−�	 /�x, and introduce the following dimensionless variables:


 = �y/x�Pex
1/2, � = ��x� �6�

	 = �effPex
1/2f��,
�, ���,
� =

T − T�

Tw − T�

�7�

Substitute Eqs �6� and �7� in the governing Eqs. �1� and �4�, the
momentum and energy equations can be written as

f�

�
+

�1/2�f f�

�2 + � 1

K1
+

Hax
2

Rex
	�1 − f�� + K2�1 − f�2� ± �� = 0

�8�

�� + �
�4/3Rd��1 + ��w − 1���3����� + �1/2�f�� +
Hax

2

Rex
Ec�f��2 = 0

�9�

Where

��x� = Rax/Pex, Rex = u�x/�, Hax
2 = �B0

2x2/�� ,

Ec = u�
2 /cp�Tw − T��, Dax = K/x2, Pr = �/� ,

K1 = 1/RexDax, K2 = K�u�/�, �w = Tw/T�,

Rd = keff�R/4aT�
3 .

f���,0� = 0, f��,0� = 0, ���,0� = 1

and

f���,�� = 1, ���,�� = 0 �10�

The primes denote partial differentiations with respect to 
. In the
above system of equations, the radiation-conduction parameter is
absent from the MHD-mixed convection heat transfer problem
when 1/Rd→0. The plus and minus signs correspond to the buoy-
ancy aiding and buoyancy opposing flows under consideration. In
the above system of nonsimilarity equations, the effects of the
magnetic field are included as a ratio of Hartman number to the
Reynolds number. K1 and K2 will reflect the effect of Darcian and
Forchheimere flows on the present problem. The physical quanti-
ties of interest are the velocity components u and v, the wall shear
stress, and the local surface heat flux from the porous wall. They
are given by

sent method and that of Duwairi and Damseh †25‡, Oosthuizen
dy are multiplied by Pr and �Pr, respectively, to get the same

g

Pr=7

Present method Duwairi and Damseh Oosthuizen and Hart
0.71220 0.71231 0.70804
0.82012 0.82006 0.80500
0.86515 0.86609 0.89603

ng

Pr=7

Present method Duwairi and Damseh Oosthuizen and Hart
0.66084 0.66134 0.65031
0.62108 0.62187 0.61010
0.65033 0.65000 0.60024
re
stu

idin

art

osi

art
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u = u�f���,
� �11�

v = − ��eff

x
�Pex

1/2��1/2�f��,
� + �
� f

��
− �1/2�
f���,
� �12�

CfxPr−1Pex
1/2 = 2f���,0� �13�

NuxPex
−1/2

�1 + �4/3Rd��w
3 �

= − ����,0� �14�

Numerical Solution
The partial differential Eqs. �8� and �9� under boundary condi-

tions �10� are solved numerically by using an implicit iterative
tridiagonal finite-difference method, Cebeci and Bradshaw �24�.
In this method, any quantity g at point ��n ,
 j� is written as gj

n.
Quantities at the midpoints of grid segments are approximated to
second order as

gj
n−1/2 =

1

2
�gj

n + gj
n−1�, gj−1/2

n =
1

2
�gj

n + gj−1
n � �15�

The derivatives are approximated to second order as

Fig. 2 Dimensionless velocity profiles for different �
Fig. 3 Dimensionless temperature profiles for different �
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� �g

��
�

j

n−1/2

= �−1�gj
n − gj

n−1�, �g�� j−1/2
n = 
−1�gj

n − gj−1
n �

�16�

Where g is any dependent variable, n and j are the node locations
along � and 
 directions, respectively. First, the third-order partial
differential equation is converted into a first-order one by substi-
tutions of f�=s and s�=w. The difference equations used to ap-
proximate the previous equations are obtained by averaging about
the midpoint ��n ,
 j−1/2� and those to approximate the resulting
equations are obtained by averaging about ��n−1/2 ,
 j−1/2�. At each
line of constant �, a system of algebraic equations is obtained.
With the nonlinear terms evaluated at the previous iteration, the
algebraic equations are solved iteratively. The same process is
repeated for the next value of � and the problem is solved line by
line until the desired � value is reached. A convergence criterion
based on the relative difference between the current and previous
iterations is employed. When this difference reaches 10−5, the
solution is assumed to have converged and the iterative process is
terminated.

The accuracy of the selected method is tested by comparing the
results with those of Duwairi and Damseh �25� and the classical
mixed-convection problem over a vertical isothermal imperme-
able plate for aiding and opposing flow �26,27�. Table 1 shows a

Fig. 4 Dimensionless velocity profiles for different �
Fig. 5 Dimensionless temperature profiles for different �
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Fig. 6 Dimensionless velocity profiles for different Rd

Fig. 7 Dimensionless temperature profiles for different Rd

Fig. 8 Dimensionless velocity profiles for different Hax /Rex

Journal of Applied Mechanics
comparison between the Nusselt number at different mixed pa-
rameter � obtained by the presented numerical method and that of
the mentioned references. The values of Hax

2 /Rex and Ec are as-
signed 0 to remove the effects of magnetic field. The radiation

Fig. 9 Dimensionless temperature profiles for different
Hax

2 /Rex
2
 Fig. 10 Local Nusselt number variations for different �
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effect is absent when Rd→�. Mathematically, to remove the ef-
fect of porous media the values of �, K1, and K2 are assigned 1, �,
and 0 respectively.

Results and Discussion
The MHD-mixed convection heat transfer problem with radia-

tion heat transfer effects from isothermal wall embedded in satu-
rated porous medium between fluid layers is analyzed. The buoy-
ancy aiding and opposing flows have been studied. The results are
drawn for selected values of K1=10 and K2=2 against dimension-
less groups. Comparisons with previously published work were
performed and the results were found to be in good agreements. It
is hoped that this work will serve as a motivation for future ex-
perimental work which seems to be lacking at the present time.

The effects of the mixed parameter for the buoyancy aiding and
opposing flows on both the velocity and temperature profiles are
drawn on Figs. 2 and 3. For the buoyancy aiding flow, increasing
the mixed parameter will increase the velocity inside the boundary
layer due to favorable buoyancy effects and consequently increase
the heat transfer rates form the porous wall. In contrast, increasing
the mixed convection parameter for the buoyancy opposing flow
has an opposing effect on both the velocity and temperature pro-
files. The effect of the porosity on the present problem as shown
in Figs. 4 and 5 is to increase the velocity and broaden the tem-
perature profile for the buoyancy aiding flow and to decrease the
velocity and thicken the temperature profile for the buoyancy op-
posing flow. The effects of the radiation-conduction parameter on

Fig. 11 Local Nusselt number variations for different Rd
both the velocity and temperature profiles are drawn in Figs. 6 and

58 / Vol. 73, JANUARY 2006
7 for the buoyancy aiding and opposing flows. Increasing this
parameter will decrease the velocity and the heat transfer rates for
the buoyancy aiding flow. For the buoyancy opposing flow, the
effect of this parameter is to increase the velocity and to decrease
the heat transfer rates from the porous wall.

The effects of the magnetic field on the mixed convection heat
transfer problem under consideration are drawn in Figs. 8 and 9. It
is shown that, for the aiding flow, increasing the magnetic field
number will decrease the velocity inside the boundary layer and
the heat transfer rates. For the buoyancy opposing flow, increasing
the magnetic field effects will increase the velocity inside the
boundary layer, and at the same time the temperature increases,
the effect of the magnetic field on this case is to decrease the heat
transfer rates for constant mixed parameters.

Figures 10–12 show the variations of the local Nusselt numbers
against the mixed parameter for the buoyancy aiding and oppos-
ing flows for different values of porosity, radiation-conduction
parameter, and magnetic field parameter. Increasing porosity will
increase the local Nusselt numbers for aiding flow and decreases
the local Nusselt for opposing flow. Increasing the radiation-
conduction parameter will decrease local Nusselt numbers for the
buoyancy aiding flow and buoyancy opposing flow. It is clear that
increasing the mixed convection parameter will increase local
Nusselt numbers for the buoyancy aiding flow and decreases local
Nusselt numbers for the buoyancy opposing flow. Increasing the
magnetic field effect is found to decrease the local Nusselt for

Fig. 12 Local Nusselt number variations for different Hax
2 /Rex
both aiding and opposing flows.
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Conclusions
The MHD-mixed convection heat transfer problem is analyzed

for the buoyancy aiding or opposing flows with radiation heat
transfer effects between the conductive gray fluid layers included
in the governing equations. The effect of increasing porosity is
found to increase the local Nusselt number for the buoyancy aid-
ing flow and to decrease it for the buoyancy opposing flow. In-
creasing the radiation conduction parameter decreased the local
Nusselt number for both aiding and opposing flows. The effect of
increasing the magnetic field parameter is found to decrease the
local Nusselt number.

Nomenclature
a � Stefan-Boltzmann constant

B0 � magnetic field flux density, Wb/m2

Cfx � local skin friction factor
cp � specific heat capacity

Dax � local Darcy number, K /x2

f � dimensionless stream function
Ec � Eckert number, u�

2 /cp�Tw−T��
g � gravitational acceleration

Hax � Hartman number, ��B0
2x2 /��

K � permeability
K� � coefficient of Forchheimers equation
K1 � parameter of the porous medium effect,

1 /RexDax
K2 � parameter of the inertial effect, K�u� /�
keff � effective thermal conductivity

L � length of the plate
Nux � local Nusselt number, hx /k

N̄u � average Nusselt numbers, h̄L /k
p � pressure

Pex � local Peclet number, u�x /�
Pr � Prandtl number, � /�

qw�x� � local surface heat flux
Rax � local Rayleigh number, Kg��Tw−T��x /��
Rex � local Reynolds number, u�x /�
Rd � radiation-conduction parameter, keff�R /4aT�

3

T � temperature
T� � free stream temperature
Tw � wall temperature

u, v � velocity components in x and y directions
u� � free stream velocity

x, y � axial and normal coordinates

Greek Symbols
�eff � effective thermal diffusivity
�R � rosseland mean absorption coefficient

� � boundary layer thickness
� � porosity
� � volumetric coefficient of thermal expansion,

−1/���� /�T�p

� � nonsimilarity parameter, Rax /Pex

 � pseudosimilarity variable
� � dimensionless temperature

�w � ratio of surface temperature to the ambient
temperature, Tw /T�

� � dynamic viscosity
� � kinematic viscosity
� � fluid density

� � electrical conductivity

Journal of Applied Mechanics
�w � local wall shear stress
	 � dimensional stream function

References
�1� Kuo-Ann Yih, 2001, “Radiation Effect on Mixed Convection Over an Isother-

mal Wedge in Porous Media: The Entire Regime,” Heat Transfer Eng., 22, pp.
26–32.

�2� Hossain, M. A., 1992, “Viscous and Joule Heating Effects on MHD-Free Con-
vection Flow With Variable Plate Temperature,” Int. J. Heat Mass Transfer, 35
pp. 3485-3487.

�3� Soundalgekar, V. M., Takhar, H. S., and Vighnesam, N. V., 1988, “The Com-
bined Free and Forced Convection Flow Past a Semi-Infinite Plate With Vari-
able Surface Temperature,” Nucl. Eng. Des., 110, pp. 95–98.

�4� Cogley, A. C., Vincenti, W. G., and Giles, S. E., 1968, “Differential Approxi-
mation For Radiative in a Non-Gray Gas Near Equilibrium,” AIAA J. 6, pp.
95–98.

�5� Hossain, M. A., and Takhar, H. S., 1996, “Radiation Effect on Mixed Convec-
tion Along a Vertical Plate With Uniform Surface Temperature,” Int. J. Heat
Mass Transfer, 31, pp. 243–248.

�6� Hossain, M. A., Alim, M. A., and Rees D. A., 1999, “The Effect of Radiation
on Free Convection From a Porous Vertical Plate,” Int. J. Heat Mass Transfer,
42, pp. 181–191.

�7� Hsu, C. T., and Cheng, P., 1985, “The Brinkman Model For Natural Convec-
tion About A Semi-Infinite Vertical Plate in A Porous Medium,” Int. J. Heat
Mass Transfer, 28, pp. 683–697.

�8� Vafai, K., and Tien, C. L., 1981, “Boundary and Inertia Effects on Flow and
Heat Transfer in porous Media,” Int. J. Heat Mass Transfer, 24, pp. 195–203.

�9� Minkowycz, W. J., Cheng, P., and Chang, C. H., 1985, “Mixed Convection
About a Nonisothermal Cylinder and Sphere in a Porous Medium,” Numer.
Heat Transfer, 8, pp. 249–359.

�10� Nield, D. A., 1991, “The Limitation of The Brinkman-Forchheimer Equation
in Modeling Flow in a Saturated Porous Medium and at Interface,” Int. J. Heat
Fluid Flow, 12, pp. 296–272.

�11� Lai, F. C., and Kulacki, F. A., 1991, “Non-Darcy Mixed Convection Along a
Vertical Wall in a Saturated Porous Medium,” Int. J. Heat Mass Transfer, 113,
pp. 252–255.

�12� Hsieh, J. C., Chen, T. S., and Armaly, B. F.,1993, “Nonsimilarity Solutions For
Mixed Convection From Vertical Surfaces in a Porous Medium-Variable Sur-
face Temperature or Heat Flux,” Int. J. Heat Mass Transfer, 36, pp.1485–
1493.

�13� Aldoss T. K., Chen T. S., and Armaly B. F.,1994, “Mixed Convection Over
Nonisothermal Horizontal Surfaces in a Porous Medium,” Int. J. Heat Mass
Transfer, 25, pp. 685–701.

�14� Duwairi, H. M., Aldoss, T. K., and Jarrah, M. A., 1997, “Nonsimilarity Solu-
tions For Non-Darcy Mixed Convection From Horizontal Surfaces in a Porous
Medium,” Heat Mass Transfer, 33, pp. 149–156.

�15� Kafoussias, N. G., 1992, “MHD Free Convection Flow Through a Nonhomog-
enous Porous Medium Over an Isothermal Cone Surface,” Mech. Res. Com-
mun., 19, pp. 89–94.

�16� Gulab, R., and Mishra, 1977, “Unsteady Flow Through Magnetohydrodynamic
Porous Media, Indian J. Pure Appl. Math., 8, pp. 637–642.

�17� Raptis, A., and Kafoussias, N., 1982, “Heat Transfer in Flow Through Porous
Medium Bounded by an Infinite Vertical Plate Under The Action of a Magnetic
Field,” Int. J. Energy Res., 6, pp. 241–245.

�18� Takhar, H. S., and Ram, P. C.,1994, “Magnetohydrodynamic Free Convection
Flow of Water at 4 C0 Through a porous Wall,” Int. Commun. Heat Mass
Transfer, 21, pp. 371–376.

�19� Aldoss, T. K., Al-Nimr, M. A., Jarrah, M. A., and A-Sha’er, B. J., 1995,
“Magnetohydrodynamic Mixed Convection From a Vertical Plate Embedded
in a Porous Medium,” Numer. Heat Transfer, Part A, 28, pp. 635–645.

�20� Duwairi, H. M., and Damseh, Rebhi A., 2003, “Magnetohydrodynamic Natu-
ral Convection Heat Transfer From Radiate Vertical Surfaces,” Heat Mass
Transfer, 40 �10�, pp. 787–792.

�21� Chamkha, A. J., and Camille Issa, Khalil Khanafer, 2002, “Natural Convection
From an Inclined Plate Embedded in a Variable Porosity Medium Due to Solar
Radiation,” Int. J. Therm. Sci., 41, pp. 73–81.

�22� Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer-
Verlag, New York.

�23� Ali, M. M., Chen, T. S., and Armaly, B. F., 1984, “Natural Convection Radia-
tion Interaction in Boundary Layer Flow Over Horizontal Surfaces,” AIAA J.,
22, pp. 1797–1803.

�24� Cebeci, T., and Bradshaw, P., 1984, Physical and Computational Aspects of
Convective Heat Transfer, Springer, New York,

�25� Duwairi, H. M., and Rebhi, A. Damseh, 2004, “MHD-Buoyancy Aiding and
Opposing Flows with Viscous Dissipation Effects From Radiate Vertical Sur-
faces” Can. J. Chem. Eng. �to be published�.

�26� Oosthuizen, P. H., and Hart, R., 1973, “A Numerical Study of Laminar Com-
bined Convective Flow Over Flat Plates,” ASME J. Heat Transfer, 95, pp.
60–63.

�27� Oosthuizen, P. H., and Naylor, D., 1999, An Introduction to Convective Heat

Transfer Analysis, McGraw-Hill, New York.

JANUARY 2006, Vol. 73 / 59



Nadia Allouache

Salah Chikh1

Faculte de Genie Mecanique
et Genie des Procedes

e-mail: salahchikh@yahoo.fr
Universite des Sciences et de la Technologie

Houari Boumediene,
B. P. 32,

El Alia, Bab Ezzouar 16111,
Algeria

Second Law Analysis
in a Partly Porous
Double Pipe Heat Exchanger
A combination of the first and second laws of thermodynamics has been utilized in
analyzing the performance of a double pipe heat exchanger with a porous medium at-
tached over the inner pipe. The goal of this work is to find the best conditions that allow
the lowest rate of entropy generation due to fluid friction and heat transfer with respect
to the considered parameters. Results show that the minimization of the rate of entropy
generation depends on the porous layer thickness, its permeability, the inlet temperature
difference between the two fluids, and the effective thermal conductivity of the porous
substrate. An increase in the effective thermal conductivity of the porous medium seems to
be thermodynamically advantageous. Unexpectedly, the fully porous annular gap yields
the best results in terms of the rate of total entropy generation.
�DOI: 10.1115/1.1991865�
1 Introduction
The increase in energy cost and energy consumption has re-

quired more effective use of energy. Hence, decreasing energy
losses is getting more and more important. Presently, second law
based methods are widely employed to analyze the overall energy
performance in a unified way and hence to identify criteria for
optimization. A thermodynamic basis to evaluate the merit of aug-
mentation techniques by second law analysis has been proposed
by Bejan �1,2�.

The use of porous materials as an alternative technique to in-
crease exchange area and to improve heat transfer is well estab-
lished. Although porous substrates generate a high pressure drop,
they remain a good passive technique for heat transfer augmenta-
tion. In order to find a compromise between hydrodynamics and
thermal performances, a second law analysis based on evaluation
of entropy generation due to both fluid friction and heat transfer
seems very suited. In this context, several works have been carried
out. Baytas �3� has studied the entropy generation in a tilted satu-
rated porous cavity for laminar natural convection heat transfer.
He found that the calculation of local entropy generation maps are
feasible and can supply useful information for selection of a suit-
able angle inclination. The research of forced convection in a
partly porous annular duct has also been conducted by Chikh et al.
�4,5� and Bouhadef et al. �6�; they reported that, for well chosen
conditions, heat transfer can be improved. Yet, only a few num-
bers of studies considered entropy generation in forced convective
heat transfer with porous media. Demirel �7�, Demirel and Kahra-
man �8,9� analyzed the volumetric entropy generation rate due to
convection heat transfer and friction in a packed duct with uni-
form heating, a rectangular packed duct with asymmetric heating,
and an annular packed bed. They showed that packing causes
equipartition of entropy generation over the cross section of the
bed.

The present paper reports a numerical calculation of entropy
generation rate for laminar forced convection flow in a double

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received June 22, 2004; final manuscript
received April 27, 2005. Assoc. Editor: D. Siginer. Discussion on the paper should be
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Department of Mechanical and Environmental Engineering, University of California
- Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four
months after final publication in the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
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pipe heat exchanger of inner and outer diameters di and de, re-
spectively. The thickness of the inner pipe of good conducting
material is assumed very weak and its thermal resistance is ne-
glected in the present study. The hot fluid flows in the inner cyl-
inder and the cold one in the annular gap. A porous substrate is
attached to the inner cylinder and the outer cylinder is perfectly
insulated, as sketched in Fig. 1. The effects of the porous layer
thickness, its permeability, the inlet temperature difference be-
tween the two fluids, and the effective thermal conductivity are
investigated.

2 Mathematical Formulation
A laminar boundary layer-type flow of incompressible fluid in a

steady state is considered. In addition, the properties are assumed
constant and the porous medium is considered homogeneous, iso-
tropic, and is saturated with a fluid in local thermal equilibrium
with the solid matrix. The case of prevailing convection in the
streamwise direction is analyzed so that axial conduction is ne-
glected. The flow is governed by the Navier-Stokes equations in
the fluid region and is modeled by the Darcy-Brinkman-
Forchheimer equation in the porous region.

The dimensionless governing equations are

Continuity equation:
�u

�x
+

1

r

��rv�
�r

= 0 �1�

where u and v are the axial and radial dimensionless velocities,
respectively.

Momentum equation
Inner cylinder

u
�u

�x
+ v

�u

�r
= − R�

dp

dx
+

1

Re Rvch
�1

r

�

�r
�r

�u

�r
�� �2�

Annular gap
Porous region

u
�u

�x
+ v

�u

�r
= −

dp

dx
+

1

Re Rv
�1

r

�

�r
�r

�u

�r
�� −

u

Re Da
−

CF

Re Da
u2
�3�
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Fluid region

u
�u

�x
+ v

�u

�r
= −

dp

dx
+

1

Re
�1

r

�

�r
�r

�u

�r
�� �4�

The dimensionless parameters Rvch, R�, and Rv represent the vis-
cosity ratio �cold to hot�, the density ratio �cold to hot�, and the
viscosity ratio �cold to effective viscosity�, respectively.

Energy equation

Inner cylinder: u
��

�x
+ v

��

�r
=

1

Re Pr R�
�1

r

�

�r
�r

��

�r
�� �5�

Annular gap

Porous region: u
��

�x
+ v

��

�r
=

Rce

Re Pr
�1

r

�

�r
�r

��

�r
�� �6�

Fluid region: u
��

�x
+ v

��

�r
=

1

Re Pr
�1

r

�

�r
�r

��

�r
�� �7�

with R� being the diffusivity ratio �cold to hot� and Rce the ther-
mal conductivity ratio �effective thermal conductivity to fluid
thermal conductivity�.
Local rate of entropy generation

Ṡg = Ṡ�p + �Ṡ�T �8�

where Ṡ�p is the part of entropy generation rate due to friction and
is computed as in Bejan �1� by the following relationship:

Ṡ�P = �2� �u

�x
�2

+ � �u

�r
�2� �9�

�Ṡ�T is the part of entropy generation rate due to heat transfer.

Ṡ�T is the proportion of entropy generation rate due to tempera-
ture gradient and is given by

Ṡ�T = �� ��

�x
�2

+ � ��

�r
�2� �10�

and

� =
kj�Thin

− Tcin
�2

�jucin

*2���Thin
− Tcin

� + Tcin
�

�11�

The subscript j in kj and � j stands for h in the hot side and for
c in the cold side. While in the porous region, j indicates the
effective thermal conductivity in kj.

The parameter � characterizes the fluid nature and depends on
the hydrodynamics and the thermal inlet conditions.

The rate of entropy generation over the whole cross section,
accounting for both porous and fluid regions, is calculated by

Fig. 1 Schematic of physical domain
integration
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Sg =	
ri

re 
�2� �u

�x
�2

+ � �u

�r
�2� + ��� ��

�x
�2

+ � ��

�r
�2��2�r dr

�12�
The Bejan number is defined as

Be =
�S�T

Sg
�13�

where S�T is the rate of entropy generation over the cross section
and due to temperature gradient. Be=1 is the limit at which the
irreversibility due to heat transfer dominates and Be=0 is the
opposite limit at which the irreversibility due to fluid friction is
the prevailing effect.

The dimensionless quantities used in all the previous equations
are defined as

p =
p*

�cucin

* , Re =
�cucin

* Dh

�c
, Da =

K

Dh
2 , Pr =

�ccpc

kc
, Rce =

ke

kc
,

R� =
�c

�h
, Rvch =

�c

�h
, Rv =

�c

�e
, R� =

�c

�h
, u =

u*

ucin

* ,

v =
v*

vcin

* , � =
T − Tcin

Thin
− Tcin

, CF = �c�F
�K

�c
ucin

* , Dh = �de − di� .

The subscripts c and h indicate, respectively, the cold fluid and the
hot fluid, while the subscript e corresponds to effective values in
the porous medium.

ucin

* and vcin

* are, respectively, the axial and radial inlet velocities
of the cold fluid and the * designates the dimensional quantities.

2.1 Boundary Conditions. The boundary conditions neces-
sary to complete the problem formulation are

Hydrodynamic conditions:

x = 0 0 	 r 	 ri u = uhin

ri 	 r 	 re u = ucin

r = 0
�u

�r
= 0

Fig. 2 Mean temperature along the heat exchanger „Rce=1,
cold side, e=0.6, Da=10−3

…

r = ri u = 0
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r = re u = 0

Continuity at the porous-fluid interface:

r = ri + e
uc = up

Rv� �uc

�r � = � �up

�r � �
Thermal conditions

x = 0 0 	 r 	 ri � = 1

ri 	 r 	 re � = 0

r = ri � ��h

�r
� = Rce� ��p

�r
�

Porous-fluid interface

r = ri + e�p = �c

Rce� ��p

�r
� = � ��c

�r
� �

r = re

��

�r
= 0

Fig. 3 Rate of entropy generation due to fluid friction at the
exit of heat exchanger „Rce=1, cold side…

Fig. 4 Rate of entropy generation due to temperature gradient

at the exit of heat exchanger „Rce=1, cold side…
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3 Numerical Procedure
A numerical procedure based on the control volume method is

used to solve the set of Eqs. �1�–�7� with the associated boundary
conditions. The inertia term in Eq. �3� is linearized as suggested
by Patankar �10�.

The partial differential equations are discretized by means of
upwind and central differencing schemes to treat the convection
and diffusion terms. The obtained system of algebraic equations is
then solved with a combination of a direct matrix inversion
method �TDMA� and a marching procedure.

After several trial computations to test the code sensitivity, a
uniform zonal grid with different step sizes in each region �porous
and fluid� and a total number of nodes equal to 16,800 �48

350 in r and x, respectively� is utilized. The convergence crite-
ria of the iterative process are met when the absolute value of
relative error on the flow rate at each grid point is less than 10−3

and when the absolute error on the heat flux transferred between
the two fluids over the entire heat exchanger is less than 10−3.

The velocity and the temperature fields found with the com-
puter code are compared with those found by Bouhadef et al. �6�.
Figure 2 shows the comparison of the mean temperature in the
cold side and illustrates the excellent agreement.

Fig. 5 Difference between the wall temperature and the mean
temperature of the cold fluid

Fig. 6 Rate of total entropy generation as function of �

parameter
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4 Results and Discussion
Computations are carried out for a diameter ratio equal to 2; the

same fluid flowing in both ducts; the effective viscosity in the
porous medium equals the fluid viscosity �Brinkman assumption�;
Prandtl number set equal to 4; the inertia coefficient in the porous
medium CF equals 0.35, Reynolds number Re=500, and the di-
mensionless heat exchanger length equals 50.

The first set of figures is presented for porous materials with a
small effective thermal conductivity, i.e., Rce equals unity. Then
follows the case of porous substrates with a high thermal conduc-
tivity in the last figures �Figs. 11 and 12�.

Figure 3 illustrates the proportion of entropy generation rate
due to fluid friction with respect to the porous layer thickness for
different values of the Darcy number characterizing the perme-
ability of the porous material. Obviously, increasing the porous
layer thickness or decreasing its permeability leads to an increase
in the rate of entropy generation. This is due to the significant
macroscopic resistance �Darcy term in Eq. �3�� imposed by a
weakly permeable porous material. On the other hand, the part of
entropy generation rate due to temperature gradient is displayed in
Fig. 4. It increases until a maximum value corresponding to a
critical thickness of the porous layer that depends on the perme-
ability. Above this critical thickness, the rate of entropy generation
decreases and becomes even lower than the value obtained for the
fluid case when the annular gap is filled above 95%. This may be
explained by the difference between the wall temperature and the
mean temperature of the cold fluid which has the same trend as
reported in Fig. 5. A highly permeable porous substrate yields a
higher heat transfer coefficient and thus a smaller convection re-
sistance. Consequently, the rate of entropy generation is smaller
for high values of the Darcy number. Moreover, since the porous
material is not a good thermal conductor in this case of Rce=1,
then it may be considered more as an insulation material. For
instance, the critical thickness may be seen in a similar manner as
the critical thickness of insulation in conduction for a cylindrical

Table 1 � paramet

�Thin
−Tcin

� 5 10 20 30

��water�*10−5 0.0757 0.2982 1.1573 2.528
��toluene�*10−5 0.0306 0.2556 0.9917 2.166
��benzene�*10−5 0.0300 0.2411 0.9356 2.060

Fig. 7 Rate of total entropy generation at the exit of heat ex-

changer „Rce=1, cold side, 10 °C<�Tin<20 °C…
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geometry. Nevertheless, it should be pointed out that this critical
thickness does not show when the porous layer acts as a good
thermal conductor �Rce�1�.

The rate of total entropy generation highly depends on the pa-
rameter �. This latter, which is a function of fluid properties,
varies significantly with an inlet temperature difference as re-
ported in Table 1.

Figure 6 exhibits the linear dependency on the parameter �.
Because of the importance of the parameter �Tin �inlet tempera-
ture difference between the hot and cold fluids� particularly on the
rate of entropy generation due to heat transfer, it is interesting to
investigate the influence on �Tin. Let us examine two cases. At
moderate values of �Tin �between 10 °C and 20 °C� the irrevers-
ibility due to heat transfer prevails over S�p co as illustrated in Fig.
7 in which the curves of Sg co follow nearly the same trend as the
curves of S�T co in Fig. 4. However, the proportion of S�pco be-
comes significant at high values of the porous layer thickness
�over approximately 80%� and for a weak permeability �Da
=10−6�. Then, the rate of entropy generation due to both fluid
friction and heat transfer are significant. This result is confirmed
in Fig. 8 by the values of Bejan number. For example, for a fully
porous case with the Darcy number equaling 10−6, Be=0.7 means
that 70% of the rate of entropy generation is due to heat transfer
and 30% due to fluid friction. For higher values of inlet tempera-
ture difference ��Tin�20 °C�, most of the irreversibility is due to
heat transfer since the curves displayed in Fig. 9 present the same
trend as the curves of S�T co.

The value of Be would then be in the upper limit �Be=1�.
Obviously, increasing the inlet temperature difference results in
more irreversibility mainly due to heat transfer. Nevertheless,
starting from a moderate value of �Tin approximately 15 °C the
case of fully porous annulus seems to be a very promising case in
terms of entropy generation rate. A reduction of 12% is obtained
in comparison to the case without a porous material as shown in
Fig. 10. This result is obtained for a thermal conductivity ratio
equal to 1. Then, it is worth exploring the case of porous sub-
strates with a higher effective thermal conductivity, i.e., Rce�1.

as function of �Tin

40 50 60 70 80

4.3670 7.4912 10.620 14.235 22.180
3.6730 6.4906 9.2018 12.333 19.006
3.5306 6.1238 8.6817 11.636 17.932
er

0
3
8

Fig. 8 Bejan number „Rce=1, cold side, 10 °C<�Tin<20 °C…
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As illustrated in Fig. 11 for two values of Darcy �10−2 and 10−6�,
when the porous matrix is a good thermal conductor �Rce�5�, the
heat transfer rate is improved and thus increasing the porous layer
thickness is no longer a cause of entropy generation due to heat
transfer but yields a substantial reduction of the total rate of en-
tropy generation �the proportion due to heat transfer being the
prevailing one�.

For example, for a fully porous case with Da=10−2 and Rce
=10 a reduction of 97% in the total rate of entropy generation is
obtained. Furthermore, at a given thickness there is a critical value
of the thermal conductivity ratio above which the total rate of
entropy generation with the porous medium is lower than the one
without the porous layer. This value depends on the parameter �,
the permeability, and the thickness of the porous matrix. The case
of e=80% is plotted in Fig. 12 for �=105. When Da=10−6 the
critical ratio is 2.5, but when Da=10−2 this ratio is equal to 1.1.
For lower values than this critical ratio, the total rate of entropy
generation is higher than the one of the fluid case without the
porous substrate. This is explained by the fact that in this situation
the porous matrix constitutes a high resistance to heat transfer.

On the other hand, beyond this critical ratio, the reduction of
the total rate of entropy generation is significant.

Fig. 9 Rate of total entropy generation at the exit of heat ex-
changer „Rce=1, cold side, �TinÐ20 °C…

Fig. 10 Rate of total entropy generation at the exit of heat ex-
−6
changer „Rce=1, cold fluid, Da=10 , case of water…
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Fig. 11 „a… rate of total entropy generation at the exit of the
heat exchanger „cold fluid, �=105, Da=10−2

…. „b… Rate of total
entropy generation at the exit of the heat exchanger „cold fluid,
�=105, Da=10−6

….
Fig. 12 Rate of total entropy generation as function of thermal
5
conductivity ratio „�=10 …
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5 Conclusion
In this paper we presented a thermodynamic analysis in a

double pipe heat exchanger with a porous medium in the annular
gap attached to the inner cylinder. The aim of this work was to
find the optimal conditions in order to reduce the rate of entropy
generation. The numerical procedure is based on the control vol-
ume method and allowed to obtain the velocity and temperature
fields and thus to compute the rate of entropy generation. The
effects of the porous layer thickness, its permeability, the inlet
temperature difference between the cold and hot fluids, and the
thermal conductivity ratio are documented.

Results show that the rate of entropy generation due to heat
transfer prevails over the one due to friction in most situations
where �Tin is high. Whereas, in the case of small values of �Tin ,
irreversibility due to fluid friction becomes significant particularly
for weakly permeable porous substrates. The properties of the
porous material have a considerable impact on entropy generation.
The predictions show that in the case of a small thermal conduc-
tivity ratio �Rce=1�, only cases of the fully porous annulus or the
porous layer thickness over 95% are of interest. However, if the
porous substrates have a high effective thermal conductivity
�Rce�1� then there exists a critical value of Rce above which a
substantial reduction of the rate of entropy generation is obtained
even with a small thickness of the porous layer, and this is very
promising in terms of irreversibility.

Nomenclature
Be  Bejan number, Be=�S�T /Sg
cp  specific heat of the fluid �J /kg�

CF  inertia coefficient, CF=�c�F�Kucin

* /�c

Dh  hydraulic diameter, Dh=de−di�m�
Da  Darcy number, Da=K /Dh

2

de  outer diameter �m�
di  inner diameter �m�
e  dimensionless porous layer thickness, e=e* /Dh
F  Forchheimer coefficient
K  permeability of the porous substrate �m2�
k  thermal conductivity �W/m k�
p  dimensionless pressure, p= p* /�cucin

*

Pr  Prandtl number, Pr=�ccp /kc
Re  Reynolds number, Re=�cucin

* Dh /�c

Rce  thermal conductivity ratio, Rce=ke /kc
Rv  viscosity ratio, Rv=�c /�e

Rvch  viscosity ratio, Rvch=�c /�h
R�  density ratio, R�=�c /�h
R�  diffusivity ratio, R�=�c /�h

r  dimensionless radial coordinate, r=r* /Dh
re  outer dimensionless radius, re=re

* /Dh
ri  inner dimensionless radius, ri=ri

* /Dh

Ṡ  dimensionless rate of local entropy generation

in Eqs. �8�–�10�

Journal of Applied Mechanics
S  dimensionless rate of entropy generation over
the cross section, in Eq. �15�

T  Temperature �K�
u  dimensionless axial velocity, u=u* /ucin

*

v  dimensionless radial velocity, v=v* /vcin

*

x  dimensionless radial coordinate, x* /Dh

Greek Symbols
�Tin  inlet difference temperature

�  porosity
�  density �kg/m3�
�  diffusivity �m2/s�
�  dimensionless temperature, �= �T−Tcin

� / �Thin
−Tcin

�
�  dynamic viscosity �kg/m s�

Subscripts
c  cold
e  effective
g  total
h  hot

in  inlet
m  mean
o  exit
p  porous

�p  due to fluid friction
�T  due to temperature gradient

Superscript
*  dimensional quantities
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Thermal and Concentrational
Maragoni Convection at
Liquid/Air Bubble Interface
The paper presents the experimental study of thermo- and solutocapillary Marangoni
convection around a gas bubble in an inhomogeneous fluid with a vertical thermal or
surfactant concentration gradient. The stationary bubble in the form of a short horizontal
cylinder with a free lateral surface was placed into a vertically oriented thin liquid layer
(Hele-Shaw cell). The evolution of thermal and concentration fields and fluid flows was
studied applying the interferometric method. In contrast to a thermocapillary convection
representing a stationary flow and stable temperature distribution, the periodic concen-
tration disturbances around the bubble were observed in the solutocapillary case. The
regularities of the discovered effect were revealed, and its interpretation was
proposed. �DOI: 10.1115/1.1991866�
1 Introduction
It is well known that inhomogeneity of temperature or dis-

solved surfactant concentration along the free liquid/gas interface
is responsible for the generation of tangential capillary stresses,
directed toward the surface tension gradient �1�. These stresses, in
turn, generate in the surrounding liquid a convective flow, known
as the Marangoni convection, in the direction of the temperature
or surfactant concentration decrease. The Marangoni convection
around a gas bubble suspended in a liquid matrix was studied in
1959 by Young et al. �2� and after that has been the subject of a
great number of investigations. A steady interest in this problem is
caused by its considerable practical importance for multiphase
system technologies, especially, in conditions where gravity-
induced mechanisms of motion are absent or reduced, for in-
stance, in microgravity. In this case, the Marangoni phenomenon
is just to be the main factor determining the behavior of gas in-
clusions in many technological processes. Among these are prepa-
ration of composite and foamy materials, formation and solidifi-
cation of alloys, and degassing of liquid substances in glasses,
ceramics, crystals, and metals.

Until recently, the overwhelming majority of theoretical and
experimental studies have been focused on thermocapillary-
caused Marangoni convection since the temperature dependence
is the most common reason of surface tension inhomogeneity.
Therefore thermocapillary flows arising in a liquid around the
bubble and causing its movement toward the temperature gradient
�the so-called thermocapillary bubble migration� have been well
investigated. The most detailed discussion of earlier studies in this
field was given in reviews �3–6�. There is a great deal of papers
�7–16� showing that in the case of upward vertical thermal gradi-
ent the arising flow is an axisymmetrical flux in the shape of a
toroidal roll around the bubble. The liquid at the bubble surface is
driven by the capillary forces to the lower bubble pole, and the
liquid far from the bubble moves upward generating a return flow.
More often the flow and the temperature field are steady. Then in
any diametral plane the thermocapillary flow has the form of two
vertical two-dimensional vortices located symmetrically about the

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received June 24, 2004; final manuscript
received April 18, 2005. Assoc. Editor: D. Siginer. Discussion on the paper should be
addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechanics,
Department of Mechanical and Environmental Engineering, University of California
- Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four
months after final publication in the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
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bubble. Some authors point out �9,11,13–16� that when a critical
value of the temperature gradient is exceeded �the Marangoni
numbers are higher than 3�104 �13��, a periodic oscillatory ther-
mocapillary flow occurs. The initially stable vortex and the tem-
perature field are distorted and experience the weak oscillations.
The oscillatory modes were observed either thermally by means
of interferometry or hydrodynamically by tracer particles. This
oscillatory flow is three dimensional, i.e., the vortices acquire the
azimuthal velocity component as well �9�. At the same time, two-
dimensional �2D� modeling of this 3D oscillatory phenomenon in
microgravity �11� revealed no oscillations. Initiation of the oscil-
lations is independent of gravity and thus of the buoyancy con-
vection �15� and most likely is related to a trivial loss of stability
of a laminar flow whenever the flow velocities become too large.

In contrast to thermocapillary, the solutocapillary convection
has not been adequately studied. Experimentally, the establish-
ment and sustention of the constant homogeneous concentration
gradient is a more difficult task. Moreover, in the absence of ad-
equate methods for measuring surfactant concentration at the free
surface, it is impossible to determine precisely the local values of
the surface tension. Most of the recent papers deal with studying
the influence of the adsorbed insoluble surfactant layer at the
bubble/drop interface on the thermocapillary convection �17–19�.
It has been found that the surfactant, transported by the convective
flow to the trailing pole of the bubble, establishes surfactant-
induced Marangoni stresses opposing those caused by the thermal
gradient. As a result, the thermocapilary-caused motion is slowed
down drastically due to the presence of the surfactant. However,
to our knowledge nobody has studied the convective motion, gen-
erated by the external concentration gradient of the surfactant dis-
solved in the surrounding fluid.

Evidently, due to the similarity of driving mechanisms, there
exists a subsequent analogy between thermo- and solutocapillary
phenomena. Thus, as in the case of thermocapillary bubble migra-
tion �20,21� we detected experimentally the appearance of soluto-
capillary migration—the bubble motion in the direction of the
surfactant concentration growth �22,23�. However, in real condi-
tions the effects observed in both cases appear to be not com-
pletely similar. The key difference is the degree of contribution
made by the diffusion and convective mass transfer mechanisms,
since the characteristic times of surfactant diffusion are two or
three orders of magnitude longer than those of heat diffusion.
Besides, there are some additional factors that influence the dis-
tribution of the surface tension, for example, surfactant adsorption

at the interface. In this situation, it seems to be possible and en-
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ergetically beneficial for a bubble to ”extract” the surfactant from
the surrounding solution and accumulate it on its own free surface
reducing thus the surface tension. In the thermal case thermody-
namic laws prohibit analogous heating of the bubble surface at the
expense of fluid cooling.

As a result, the solutocapillary Marangoni convection differs
from the thermocapillary one. Thus, the original solutocapillary
phenomenon was found in our recent investigations of the air
bubble behavior in a horizontal two-layer system of dissolvable
fluids. In these experiments �24� a vertical concentration differ-
ence generating the solutocapillary Marangoni convection around
the bubble was initiated between its upper and lower poles. In a
similar thermal problem for a bubble placed in a fluid with a
vertical thermal gradient, the initiated thermocapillary flow was
stationary. In the solutal case it was found out that the convective
flow had the oscillatory character since the concentration field
around the bubble experienced strong periodic disturbances. The
oscillations period and duration depended on the initial surfactant
concentration difference, solution average concentration, and
physico-chemical parameters, bubble dimensions. Thus, the pe-
riod decreased distinctly with the concentration difference in-
crease, whereas the time of oscillation continuance on the contrary
grew.

Based on the available evidence it was speculated that such a
mass transfer was caused by a regular ejection of the surfactant
excess, accumulated on the bubble poles under the action of the
capillary forces, into the surrounding medium. However, for the
mentioned liquid layer geometry and orientation this hypothesis
could not be proved by direct investigations of the concentration
fields and convective flow velocities. Therefore the experiments
were performed in a vertically oriented liquid layer with surfac-
tant concentration stratification in order to visualize the concen-
tration distributions and the structures of solutocapillary convec-
tive flows around the bubble. In the same experimental cuvette the
thermocapillary Marangoni flow and temperature distribution
around a bubble in a pure liquid with a vertical upward-directed
thermal gradient were studied and the comparison between ther-
mocapillary and solutocapillary cases was performed.

2 Experimental Technique
The test cuvette was a shallow 90�40�1.2 mm rectangular

cavity confined between two parallel semi-transparent mirror
plates �the so-called Hele-Shaw cell� and set vertically on its nar-
row face. The experimental setup is shown schematically in Fig.
1. To investigate thermocapillary convection the cell was filled
with pure isopropyl alcohol and heated from above by an electric
heater located at the top of the cuvette. This allowed us to initiate
in the liquid an upward thermal gradient. In a solutocapillary ex-
periment, the cuvette was filled half-full with distilled water and
then topped up with 50%–100 % water solution of isopropyl al-
cohol �by concentration we mean the mass fraction of the dis-

Fig. 1 Experimental setup
solved surfactant�. Due to diffusion at the interface the fluids par-
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tially mixed forming in the central part of the cuvette a stable
region with nearly linear vertical distribution of concentration.

An air bubble was injected with a medical syringe in the center
of the region with a maximum temperature or concentration gra-
dient. Due to a small cavity thickness the bubble appeared to be
squeezed between the vertical cell walls taking the shape of a flat
disk with a free lateral surface. Thus the bubble can be considered
as a short horizontal cylinder, and a convection flow around the
bubble—as a two-dimensional one. A special wire frame in the
form of a small ring clamped between the cuvette walls was used
to prevent the bubble from buoying under the action of the
Archimedean force. The thickness of the wire was 0.3 mm, there-
fore the frame reduced the effective thickness of the cavity up to
0.6 mm, which appeared to be enough to keep the bubble motion-
less. On the other hand, owing to small dimensions of the frame
the upper lateral surface of the bubble remained free and the de-
velopment of the Marangoni convection occurred in the usual
manner.

The experimental cuvette was used as a cell of the Fizeau laser
interferometer operating both in reflected and transmitted light
�see Fig. 1�. Therefore the surfactant distribution was recorded as
a system of isolines of the refraction index, which under isother-
mal conditions varies proportional to the solution concentration.
An interval between two interference fringes corresponds to a
variation of the surfactant concentration by a magnitude ranging
from 0.28% to 0.31% because of the nonlinear character of the
dependence of the refraction index on the solution concentration
�25�. All solutocapillary experiments were carried out at the am-
bient temperature �20±1� °C.

In thermocapillary experiments, the temperature dependence of
the refraction index allowed us to visualize temperature distribu-
tion in the fluid. To fit the temperature difference to the number of
interference fringes we performed additional thermocouple mea-
surements. This allows us to take into account thermal expansion
of the cuvette walls, which also contribute to the interference
patterns.

3 Experimental Results
Typical interferograms of the temperature field around the

bubble obtained from experiments on isopropyl alcohol heated
from above are given in Fig. 2�a�. The height of the bubble was
3.3 mm, and its width—7.6 mm. After some time required for
diffusion heating of the fluid, a vertical, almost time invariable
temperature stratification was established in the cuvette. At a dis-
tance from the bubble surface the isothermal lines of the undis-
turbed temperature field are horizontal, whereas in the immediate
vicinity of the surface they are curved downward. This can be
regarded as supporting evidence for generation of the stationary
thermocapillary Marangoni flow.

Plots of temperature � versus vertical coordinate z with the
origin at the bubble center are constructed for this interference
pattern in Fig. 2�b�. Vertical dashed lines on the plot show the
position of the bubble boundaries. Curve 1 describes temperature
distribution at a distance from the bubble �along the section A-A,
Fig. 2�a��, where it is not disturbed by a thermocapillary flow at
the interface. Curve 2 corresponds to the temperature along the
section B-B while in the liquid, and to the temperature at the
surface at the level of the bubble. As it is evident from the com-
parison of the plots, the evolution of the capillary flow has an
inessential effect on the character of the concentration field around
the bubble and therefore there still exist appropriate conditions for
the Marangoni convection. The value of the temperature gradient
obtained in this experiment corresponds the thermal Marangoni
number equal approximately to 7�103.

The solutocapillary situation appears to be different. The inter-
ferogram of the concentration field around the bubble obtained for
isopropyl alcohol solutions is given in Fig. 3�a�. The height of the
bubble was 4 mm, width—7.7 mm. The alcohol concentration in

the upper part of the cuvette was 50%, and in the lower part—0%
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�pure water�. This generated in the cuvette a stationary vertical
stratification of the surfactant concentration with a downward-
directed gradient of the surface tension. Initially the isolines of the
concentration field are horizontal. As in the thermal case, the tan-
gential capillary forces initiate in a thin boundary fluid layer
around the bubble a solutocapillary flow directed toward its lower
pole. However, in contrast to thermocapillary motion, this flow
deforms the concentration field much stronger curving its isolines
around the bottom of the bubble.

Figure 3�b� demonstrates the concentration distribution at a dis-
tance from the bubble �line A-A� and along its diameter �line
B-B�. Concentration C of the undisturbed field monotonically in-
creases with the height �curve 1�, whereas the concentration dis-
tribution near the bubble is quite different �curve 2�. It is readily
seen that just under the bubble there appears a narrow zone with
the maximum gradient of the surfactant concentration, whereas
the concentration along the whole lateral surface of the bubble up
to its upper pole remains practically unchanged. The correspond-
ing flat section of the experimental curve 2 is denoted by long-
dash line. Thus, in the solutocapillary case, unlike the thermocap-
illary one, the development of the capillary flow leads to
generation of a thin near-surface layer around the bubble. In this
layer, the surfactant concentration is found to be homogeneous
and equal to the value of concentration at the bubble upper pole.
For this reason, the distribution of the surface tension over the
whole bubble surface becomes homogeneous and the solutocapil-
lary flow ceases, this being the main difference from the ther-
mocapillary flow, which is sustained by heat diffusion.

However, the achieved equilibrium in the liquid/bubble system
is not final. During the Marangoni convection the capillary forces
generate under the bubble a region of concentrated surfactant so-

Fig. 2 Thermocapillary convection: „a… interference pattern; „

Temperature gradient 1.2 °C/mm.

Fig. 3 Solutocapillary convection: „a… interference pattern; „b

Concentration gradient 0.9 % /mm.
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lution with the density lower than that of the surrounding liquid.
The established stratification is unstable, and when the solutocap-
illary flow sustaining this concentration distribution vanishes, the
equilibrium is disturbed. Under the action of the Archimedean
forces the streams of the alcohol begin to buoy up near the lateral
surfaces of the bubble. Due to fluid continuity, this motion is
accompanied by a downward flow along the free bubble surface.
The surfactant-concentrated fluid over the bubble, entailed by this
flow, is carried to the upper pole of the bubble and after reaching
the free surface is again transferred downward along the surface in
the direction of surface tension growth.

Reestablishment of the surface tension difference triggers the
capillary mechanism of mass transfer, and intensity of the surface
motion abruptly increases, giving rise to a violent convection flow
around the bubble in the form of two symmetric vortices �Fig.
4�a��. During evolution these vortices capture and mix more and
more areas of the solution with higher surfactant concentration. As
a result the average density of the solution within the vortex cell
decreases, the cell shifts upward and at a certain moment cuts off
the surfactant supply to the bubble surface. Once this happens, the
convection motion ceases as fast as it has started.

Later, under the action of the gravity forces a nearly initial
pattern of the vertical concentration stratification is gradually re-
stored �Fig. 4�b��. Then, after a time, the whole process is re-
peated. Such oscillations of the fluid state occur with the period of
about 1–2 min and may continue as long as there exists external
stratification of the surfactant concentration. Figure 4�c� shows
interference patterns observed 60 min after the beginning of os-
cillations. It is seen that the homogeneous concentration area
above the bubble extends significantly due to mixing of the solu-
tion. However, the vertical concentration difference around the

temperature distribution far from „1… and near „2… the bubble.

oncentration distribution far from „1… and near „2… the bubble.
b…
… c
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bubble still exist and thus the oscillatory convective flow is peri-
odically resumed �Fig. 4�d��, though with less intensity and
frequency.

4 Discussion
A key point in understanding the reasons for periodic initiation

of solutocapillary motion is the fact that the difference of the
surfactant concentration between the bubble poles measured at a
distance from the bubble is similar to that in the zone of strong
concentration heterogeneity under the bubble. Based on the results
of the preliminary experiments �24� one would expect that adsorp-
tion essentially contributes to formation of the concentrated sur-
factant “cap” at the lower pole of the bubble. However the fact
that there is no excess of the surfactant concentration in the cap
over the maximum concentration of the surrounding solution sug-
gests that the principal mechanism in the examined phenomenon
is just the solutocapillary surface stresses rather than adsorption.

In its turn the action of these forces is determined by the exter-
nal conditions �with respect to the bubble�, in particular, by the
concentration difference existing in the liquid. It is to be noted
however, that the bubble itself affects its environment in the sense
that a capillary flow initiates a large-scale flow of the gravitational

Fig. 4 Interferograms of concentration distribution: „a… t=0.2
tration gradient 2.5 %/mm.
Fig. 5 Interferograms of concentration di
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nature. This type of the flow can change the structure of the con-
centration field at a rather long distance from the bubble and thus
exert a back action on the capillary flow.

A continuous video recording of the interference picture al-
lowed us to investigate the evolution of the concentration field
around the bubble. Since the surfactant distribution changed peri-
odically the measurements of its structure were made at the start-
ing time of each cycle of the convection motion. The characteris-
tic interference patterns, obtained 60 and 180 min after the
beginning of the test are presented in Figs. 5�a� and 5�b� �the
moment of time t=0 has been shown in Fig. 3�a��. The corre-
sponding concentration distributions in the section A-A are shown
in Fig. 6. It can be seen �curves 1, 2, 3�, that the values of con-
centration far above and below the bubble are slowly equalized,
and the averaged solution concentration in the operation zone of
the cuvette increases due to the diffusion processes. In this
zone—at the level of the bubble—a periodically arising convec-
tion flow gradually mixes the solution, forming convective vorti-
ces with clearly defined boundaries �see Fig. 4�a��. As a result, the
concentration difference �C between the bubble poles decreases
with time t. This relationship is given in Fig. 7. The graph dem-
onstrates that first the concentration difference diminishes quite

; „b… t=1.8 min; „c… t=60.0 min; „d… t=60.3 min. Initial concen-
min
stribution: „a… t=60 min; „b… t=180 min
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rapidly, but approximately after 60 min the decrease becomes
much slower approaching some constant asymptotic value. The
values of the concentration Marangoni number corresponding to
these concentration differences are from 3.5�106 to 16.8�106.

The disturbance frequency of the concentration field has similar
time dependence. Figure 8 shows the variation of the oscillation
period T with time. The period, being first about 1 min, increases
monotonically and also reaches the maximum within 60 min, after
which it remains practically invariable. The coincidence of the
characteristic times of the above relationships �Figs. 7 and 8� sug-
gests that the oscillation frequency is defined by the concentration
difference in the undisturbed solution. Therefore in Fig. 9 we have

Fig. 6 Variation of concentration far from the bubble with ver-
tical coordinate at time moments 0 min „1…, 60 min „2… and 180
min „3…

Fig. 7 Variation of concentration difference between bubble
upper and lower poles with time

Fig. 8 Variation of concentration field oscillation period

around the bubble with time
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plotted on the ordinate axis the oscillation frequency normalized
to the concentration difference between the upper and lower poles
of the bubble.

It is seen that all experimental points are located on the straight
line with the ordinate values increasing from 0.2 to 0.3 min−1 %−1

within the whole time interval except the region at the very be-
ginning, where the concentration gradient is determined by the
initial conditions. An increase in this relationship with time may
be caused by the growth of the average concentration of the solu-
tion whose general physical parameters �surface tension, dynamic
viscosity, density� are nonlinearly concentration functions. The
obtained result supports the view that despite the complicated na-
ture of the considered phenomenon, these are just the solutocap-
illary Marangoni forces that are responsible for the origin of pe-
riodical convective fluid motion.

Acknowledgment
The work was supported by Russian Foundation for Basic Re-

search under grant 03-01-00579.

Nomenclature
C � concentration
D � surfactant diffusion coefficient

MaC � concentration Marangoni number,
=�h2 /�D��C�C

Ma� � thermal Marangoni number, =�h2 /�������
T � period of oscillations
d � bubble width
h � bubble height
t � time
z � vertical coordinate

�C � concentration gradient, =�C /�z
�� � thermal gradient, =�� /�z

� � fluid thermal diffusivity
� � fluid dynamic viscosity
� � temperature
� � surface tension

�C � concentration coefficient of surface tension,
=�� /�C

�� � thermal coefficient of surface tension, =�� /��
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Motion of a Sphere Suspended in
a Vibrating Liquid-Filled
Container
The effects of small vibrations on the motion of a solid particle suspended in a fluid cell
were investigated theoretically and experimentally. An inviscid model was developed to
predict the amplitude of a solid particle suspended by a thin wire in the fluid cell which
was vibrated horizontally. Both the model and experimental data showed that the particle
amplitude is linearly proportional to the cell amplitude, and the existence of a resonance
frequency. At higher cell vibration frequencies well above the resonance frequency, both
the model and experiments showed that the particle amplitude becomes constant and
independent of the wire length. �DOI: 10.1115/1.1992516�
1 Introduction
Advanced materials can be produced under microgravity where

gravity induced convection is suppressed, but many semiconduc-
tor and protein crystal experiments conducted in the past aboard
the Space Shuttle and Mir Space Station have yielded unexpected
results due to certain fluid behavior unique to the space environ-
ment. Small vibrations existing on the space platforms can totally
alter the fluid behavior under microgravity which may lead to
inferior crystal properties. Thus, there is a need to understand and
control the effects of vibrations on fluid systems relevant to ma-
terial processing aboard space platforms including the g-jitter ef-
fects. More specifically, the motion of a solid particle in fluid cells
filled with liquids of different densities and viscosities, and sub-
jected to random and forced vibrations need to be investigated
over a wide range of experimental conditions.

To this end, a systematic series of theoretical and experimental
investigations have been conducted to study the effects of con-
trolled vibrations on the motion of a solid particle in a fluid cell,
relevant to the fields of material processing, fluid physics, and
protein crystal growth. Many studies have been conducted on
flow-induced vibrations of solid structures. However, the reverse
situation of vibration-induced fluid motion, in a closed container
full of liquid, has not yet been fully explored and tackled by any
physical experiment. Some theoretical and experimental studies
exist on fluid flow in homogeneous and heterogeneous systems at
high vibration frequencies, so those results would be utilized.

Stokes �1�, Basset �2�, and Boussinesq �3� derived the expres-
sions for the hydrodynamic forces on a sphere, subjected to har-
monic and arbitrary motion respectively, exerted by the surround-

1To whom correspondence should be addressed.
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ing fluid. They omitted the inertia terms �nonlinear terms� in all
calculations in order to simplify the Navier-Stokes equations. The
inertia terms were first included by Whitehead �4� who started
from the undisturbed parallel flow at infinity, and showed that the
first approximation using the perturbation technique cannot satisfy
the boundary condition. Happel and Brenner �5� mentioned the
next approximation also diverges at infinity. Those results are
known as Whitehead’s paradox. Oseen �6� linearized the nonlinear
terms up to the first order and showed that the ratio of the inertial
to the viscous terms cannot be neglected at large distances �1/Re�
as assumed by Stokes for creeping flow no matter how small the
particle diameter is. Later, Proudman and Pearson �7�, showed the
inaccuracy of Oseen’ equations near the edge of the particle, and
introduced solutions near and far from the body, and matched
them asymptotically as described by Nayfeh �8�.

Lighthill �9� was the first to investigate drag caused by periodic
vibrations. He mentioned that below a critical frequency a quasi-
steady state exists in the laminar boundary layer. Fuat Odar �10�
dealt with the forces acting on a sphere accelerating in an other-
wise quiet and viscous fluid, and stated that the general situations
in which both the fluid and the body move are very difficult to
study, since the motion of the fluid could be curved and unsteady.

Other important studies have been performed to determine the
terminal velocities of a spherical particle in a vertically oscillating
liquid. Among them were those published by Baird et al. �11�,
Ikeda �12�, Jameson and Davidson �13�, and Tunstall et al. �14�.
An article by Molinier et al. �15� dealt with a study of the motion
of a sphere in a column where there is a circulation of a viscous
oil. An important reference that summarizes the works of the
above authors and others is by Clift et al. �16� which included all
the main studies up to 1978 on the motion of drops, bubbles and
particles. It is an important reference for flows at low and high
Reynolds numbers and calculating the drag force induced and the
wall effects on the particle motion.

Ganiev et al. �17� and Kawaji et al. �18� studied the effect of
vibrations on liquid-vapor or liquid-gas bubble systems in space.
Friesen et al. �19� numerically predicted the linear relationship
between the bubble amplitude and cell vibration amplitude, shown

experimentally and theoretically for an inviscid liquid by Kawaji
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et al. �18�. Other relevant studies include that of Houghton �20�
who analyzed the nonlinear drag �Newton’s law� of free particles
in a sinusoidal velocity field leading to the Mathieu equation,
where he found that stable particle trajectories may occur in cer-
tain ranges of amplitude and frequency. Chelomey �21� performed
some experiments on a solid particle immersed in a liquid-filled
container and concluded that under certain conditions, nonuniform
forces arise with zero-mean values acting on the particle. In the
experiments by Chelomey �21�, these forces lead to a paradoxical
behavior of bodies in an oscillating liquid; bodies of greater den-
sity than the surrounding fluid can emerge at the top, whereas
light bodies can move downwards against the force of gravity.
Lyubimov et al. �22� dealt with the mean forces and torques acting
on the bodies of different shapes, under some constraints of the
vibration frequencies; they derived analytically the vibrational
forces acting on the particle in a fluid subjected to a sinusoidal
motion.

Recent protein crystal growth experiments conducted in our
laboratory by Gamache �23� have shown that small vibrations can
induce movements in crystals which in turn cause significant fluid
motion around the growing crystal. This may explain the motion
of protein crystals observed in space experiments performed by
Chayen et al. �24� and others, and possibly caused by small vibra-
tions called g-jitter on space platforms.

The objective of the present work was to theoretically and ex-
perimentally investigate the response of a solid particle in a fluid
cell to vibrations of small amplitude and frequency less than
10 Hz. To conduct experiments with solid-liquid systems of dif-
ferent densities on the ground subjected to vibrations of low fre-
quencies, the particle was attached to a wire and suspended in a
closed fluid cell, so that no sedimentation by gravity would occur.

2 Experimental Apparatus
The experimental apparatus consisted of a test section, a PC-

controlled linear translation stage, and a video camera/recording
system as shown in Fig. 1. The test equipment had to be totally
vibration free before starting, so all the equipment was mounted
on a vibration-isolation table. The background vibration level in
the range of 0.1 mg was considered to be acceptable �where 1 g is
normal gravity�. Each of the major components is described below
in detail.

A computer-controlled translation stage was used to vibrate the
fluid cell with sub-micron resolution and repeatability. It was con-
trolled to move horizontally with a specified amplitude and fre-
quency in a nearly sinusoidal manner. The test section was a liq-
uid filled rectangular vessel �110 mm�70 mm�70 mm� made of
smooth, polished acrylic plates. Six grooves were cut on the side
walls to place flat inserts in order to adjust the width of the cell
and to study the wall proximity effects on the particle motion. To
study the effects of the wire diameter as well as wire length, thin
platinum wires of different diameters �50, 75, 125, 175, and
250 �m� and length �40, 60, 70, and 80 mm� were used. The
wires were made of platinum to avoid any anticipated corrosion in
water and to minimize any galvanic effect.

Only spherical steel particles have been used in the experiments
conducted so far leaving other particle shapes for a future study.
The liquid used to fill the fluid cell was distilled water, which has
relatively low viscosity ��=10−3 kg/m.s at 20°C and 1 atm�, and
may be considered as inviscid from a theoretical point of view. A
color video camera �Hitachi D.S.P. VK C-370� with interchange-
able lenses was used to capture the particle motion with sufficient
magnification. The edge of the particle was captured at 30 frames
per second. The shutter speed was set at 1 /1000 s−1 to obtain
sharp images. The particle edges recorded in a video tape were
analyzed 85 frames at a time using an image analysis program.
For each run, 255 frames or particle edges captured over a period
of 8.64 s were measured, and the data were entered into a spread-

sheet to calculate the particle amplitude and frequency.

Journal of Applied Mechanics
First, the cell vibration frequency was set at 0.1 Hz and the cell
amplitude was changed from 0.5 to 10 mm over small incre-
ments. Then the vibration frequency was increased by 0.25 Hz up
to 3 Hz, and the experiment was run again with the same ampli-
tudes as before for 0.1 Hz. The procedure was then reversed such
that at a fixed cell vibration amplitude of 0.5 mm, the cell fre-
quency was increased from 0.1 to 3 Hz. After reaching 3 Hz, dif-
ferent amplitudes were imposed from 2 to 10 mm. The system
was run for at least 5 min to allow the particle and fluid motions
to become stabilized, before the particle images were recorded for
at least 2 min on a digital video tape by means of a digital VCR
�JVC Model AG-7355�. It is important to note that the light source
was placed far from the fluid cell to avoid any heating effect. The
experiments were repeated at least 15 times for a given experi-
mental condition.

The phase of the particle motion with respect to the vibrated
cell motion was identified by fixing a rod with a sharp marker on
the vibration isolation table, and vibrating the fluid cell while the
particle edge and the marker position were recorded simulta-
neously. This way, the direction and speed of the cell motion
could be detected in the video image with respect to the fixed
marker rod. A pixel to �m conversion factor was obtained by
lowering a platinum wire of known diameter to the bottom of the
fluid cell and recording its image. Then by using the same image
analysis program, the wire diameter in pixels was calculated and
the conversion factor was computed.

3 Theoretical Analysis
The particle motion in an inviscid fluid and infinite cell under

forced vibration was theoretically analysed as follows. Neglecting
the effects of surface tension and heating, the Navier-Stokes equa-
tions for the fluid of density, �L, surrounding a spherical particle
are given by,

�v
�t

+ �v . ��v = −
�p

�L
− R̈ + g �1�

where v is fluid velocity, p is the pressure, R̈ is the particle accel-
eration, and g is the acceleration field. The velocity far away from
the particle is

v� = − Ṙ + a� cos �ti �2�

where a is the imposed vibration amplitude and � is the angular
frequency (=2�f�. The velocity field is related to the velocity
potential by

Fig. 1 Experimental setup
v = �� �3�
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where �� = 0 for a potential field. �4�
Substituting �3� into �1� and �2� and integrating, we obtain

��

�t
+

1

2
����2 = −

p

�L
− R̈ . r + g . r �5�

and �� = − Ṙ . r + a� cos �ti . r �6�

where r is the vector from the center of the particle to any point in
the fluid cell, i is the direction of cell motion, and 	� is the
velocity potential at infinity. The harmonic solution of �5� is given
by,

� = a� cos �ti.r + C1
i . r

r3 − Ṙ . r + C2
Ṙ . r

r3 �7�

where C1 and C2 are determined by applying the kinematic con-
straints for an inviscid fluid on the surface of the sphere.

vr = �� . n = 0 �8�

where n is the outward normal from the sphere of radius R0.
Substituting �7� into �3� gives,

v� = a� cos �ti + C1
i

r3 − 3C1
�i . r�r

r5 − Ṙ + C2
Ṙ

r3 − 3C2
�Ṙ . r�r

r3

�9�

Using the condition �8� yields

vr = a� cos �ti . n + C1
i . n

R0
3 − 3C1

i . n

R0
3 − Ṙ . n + C2

Ṙ . n

R0
3

− 3C2
Ṙ . n

R0
3 = 0 �10�

where the constants C1 and C2 can be calculated and are given by

C1 = 1
2a�R0

3 cos �t �11�

C2 = − 1
2R0

3 �12�

Hence, the fluid velocity v� is given by,

v = a� cos �t�1 +
1

2
�R0

r
�3� −

3

2
a�R0

3 cos �t
�i . r�r

r5

− Ṙ�1 +
1

2
�R0

r
�3� +

3

2
R0

3 �Ṙ . r�r
r5 �13�

The pressure p on the surface of the sphere is determined now
from �5� as follows:

p = 3
2�La�2R0 sin �ti.n + 1

2�LR0R̈.n + �LR0g.n �14�

Thus, the total pressure force acting on the sphere is given by,

Fp = − � pds� �15�

Substituting �14� into �15� leads to,

Fp = − 3
2�La�2V sin �ti − 1

2�LVR̈ − �LVg �16�

By performing a force balance on the particle of mass m, and
radius R0, suspended by a wire of length �L−R0� as shown in Fig.
2, we can write the equation of motion for the particle as,

mR̈ = − � pds + mg + f �17�

where f is the wire tension.

Substituting �16� into �17� gives,
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mR̈ = − 3
2�La�2V sin �ti − 1

2�LVR̈ + mg + f − �LVg �18�

Since R = Rp + a sin �ti , �19�
substitution of �19� into �18� yields

�1 +
1

2

�L

�S
	R̈p = ��S − �L

�S
��a�2 sin �ti + g� +

f

m
�20�

The vertical component of �20� yields the wire tension as
follows.

f = mg��S − �L

�S
� �21�

To determine the instantaneous displacement in the i direction,
the horizontal component of �20� has to be calculated by assuming
small amplitude of particle oscillations from the equilibrium po-
sition of the particle. Substituting the horizontal component of the
force f from �21� into �20�, the following differential equation for
the horizontal displacement, Xp, of the particle with respect to the
equilibrium position can be obtained.

�1 +
�L

�S
	Ẍp = ��S − �L

�S
��a�2 sin �t − g

Xp

L
	 �22�

By solving Eq. �22� analytically, the particle amplitude is given by

A =
a

g

L�2 −
2�S + �L

2��S − �L�

, �23�

In �23�, we can see clearly that the denominator becomes zero
for

�res =
2��S − �L�
2�S + �L

� g

L
� �24�

which is the resonance frequency. At this frequency, �res, the par-
ticle amplitude would be theoretically infinite. Whether this pre-
diction is valid or not can be tested by vibrating the cell at gradu-
ally increasing frequencies and measuring the particle amplitude.
Beyond the resonance frequency, the denominator of �23� would
become negative but finite indicating a phase shift between the
particle and cell motions. Before the resonance, the particle and
cell move in the same direction, but above the resonance fre-
quency, they move in opposite directions. A further increase in the
vibration frequency beyond the resonance frequency gives rise to
a reduction in the particle amplitude and the following asymptotic
particle amplitude, A�, as �→�.

�A�� = 2a� �S − �L

2�S + �L
� �25�

It is noted that Eq. �23� can be obtained by starting from the

Fig. 2 Balance of forces acting on a particle of a mass m sus-
pended by a wire of length L
general form of the forces acting on a particle as shown in Mag-

Transactions of the ASME



naudet et al. �25� in their theoretical analysis of the bubble motion
in inhomogeneous flows. The present analysis additionally reveals
the expressions for the temporal and spatial fluid velocity and
pressure fields around the oscillating particle, which were then
used to predict the particle amplitude.

Fig. 3 Particle displacement from the
„b… first-smoothed data, „c… second-s
data

Fig. 4 Instantaneous particle displa
=0.25 Hz, a=8 mm; „b… f=0.5 Hz, a=4

a=1 mm

Journal of Applied Mechanics
4 Results and Discussion

The steel particle response to the external vibration is shown in
Figs. 3 and 4 for imposed cell amplitudes of 8, 4, 2, and 1 mm and
a range of vibration frequencies from 0.1 to 3 Hz for the wire

ean position, „a… instantaneous data,
othed data, and „d… third-smoothed

ent from the mean position, „a… f
; „c… f=0.75 Hz, a=2 mm; „d… f=1 Hz,
m
mo
cem
mm
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length, L=70 mm. In Figs. 3�a�–3�d�, the particle position data are
presented for the case of the cell vibration frequency equal to
0.1 Hz and amplitude of 8 mm. Figure 3�a� shows the raw posi-
tion data. Figure 3�b� shows the results of smoothing using a
moving average calculation method, in which 30 consecutive
points were averaged at any given time. Figure 3�c� shows the
data obtained after applying the same smoothing operation to Fig.
3�b�, while Fig. 3�d� shows the result after the third smoothing
operation. From Figs. 4�a�–4�d�, it is clear the particle followed a
near sinusoidal motion for cell vibration frequencies above
0.25 Hz, but the effect of a pendulum motion was superimposed
for frequencies less than 0.25 Hz.

For a cell vibration at 0.1 Hz shown in Fig. 3, the particle
motion consisted of:

1- a simple pendulum motion with a period equal to that of a
wire attached to a particle swinging under the force of grav-
ity. The period of such motion depends on the wire length
only and not the imposed vibration frequency.

2- Smoothed particle motion had a frequency equal to that of
the imposed vibration.

The effect of the wire length on the particle amplitude was
found to be large as shown in Fig. 5. If the wire length was
increased, the particle amplitude would increase markedly for a
given cell amplitude and frequency. Larger increases in the par-
ticle amplitude occurred at higher cell vibration frequencies �e.g.,
0.75 and 1.0 Hz�. The dashed lines correspond to the theoretical
predictions given by Eq. �23�, which are in good agreement with
the data. As the wire length was increased, the particle amplitude
increased nearly linearly mainly for frequencies less than 0.75 Hz.
The error bars shown for some data points in Fig. 5 indicate the
maximum and minimum values of the 15–20 measurements ob-
tained for a given run. The deviations of the maximum and mini-
mum values from the mean value remained within ±5% even in
the worst case.

For a constant cell vibration frequency of 1.0 Hz shown in Fig.
6, the particle amplitude increases with the wire length and cell
amplitude. Again, the inviscid model predictions are in good
agreement with the experimental data. In Fig. 7, the wire diameter
is shown to have a small effect on the particle amplitude. For wire
diameters 
125 �m, it is clear that the particle amplitude re-
mained constant but as the wire diameter was increased above
125 �m, the particle amplitude decreased only by a small amount
as shown particularly for an imposed cell amplitude of 8 mm and
a frequency of 1.0 Hz. This reduction in the particle amplitude is

Fig. 5 Variation of particle amplitude with wire length „L−R0…

for cell vibration amplitude of 4.0 mm at different frequencies
due to the drag force exerted on the wire. Thus, we can conclude

76 / Vol. 73, JANUARY 2006
that the use of a wire with a diameter less than 125 �m does not
influence the particle motion in the present experiments due to a
negligible drag force exerted on the wire.

Several experiments have been performed with different cell
inserts to reduce the cell width and to see the effect of the ratio of
the cell width to particle diameter. The results obtained for a steel
particle in water �not shown here� indicated that the effect of the
inserts is negligible for the cell width to particle diameter ratio
greater than 3. To see the effect of the attractive force caused by
vibration, it would be necessary to observe the particle moving in
the fluid near the wall.

The particle amplitude increased linearly with the cell ampli-
tude for a given frequency as shown in Fig. 8, and this increase is
more clearly observed at high cell vibration frequencies; these
results also agree well with the predictions of the present inviscid
model described earlier. Figure 9 shows the variation of the par-
ticle amplitude with the cell vibration frequency for various cell
amplitudes. It is noticed that for any cell amplitude, as the vibra-
tion frequency was increased, the particle amplitude increased and
reached a maximum where the system is in a resonant state, and
this resonance frequency was equal to 1.7 Hz for a steel particle in
water. Above this resonance frequency, the particle amplitude
started decreasing in magnitude markedly as the cell frequency
was increased further.

The sign of the particle amplitude in Fig. 9 indicates the phase
angle relation between the particle and the cell: Positive ampli-
tudes mean the same direction for the cell and particle motions,
while the negative amplitudes mean motions in opposite direc-
tions. The experimental results agreed well with the theoretical

Fig. 6 Variation of particle amplitude with wire length „L−R0…

for cell vibration frequency of 1 Hz at different cell vibration
amplitudes

Fig. 7 Effect of wire diameter on the particle amplitude for

wire length=7 cm and different cell vibration conditions
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predictions for an inviscid fluid. In Fig. 9 an asymptotic line is
indicated at 1.7 Hz where the particle amplitude reaches a maxi-
mum for a steel particle in water. Below this frequency, the par-
ticle and the cell moved in phase with each other; above that
frequency, the particle moved in opposite phase with respect to the
cell. This was experimentally confirmed for any cell amplitude,
using a marker fixed in the laboratory frame of reference and
comparing the relative motions of the cell and particle with re-
spect to this marker.

An important theoretical prediction to check is the absence of
the particle diameter effect on the amplitude and frequency of the
particle motion. Table 1 presents the particle amplitude data ob-

Fig. 8 Variation of particle amplitude
cies „water, wire length: 70 mm…

Fig. 9 Particle Amplitude versus frequency for different cell
amplitude, L=70 mm

Table 1 Particle amplitude data for a

Cell Vibration

Frequency �Hz� Amplitude �mm� 12.7 m

0.25 2.0
0.25 4.0
0.25 8.0
0.5 2.0
0.5 4.0
0.5 8.0

0.75 2.0
0.75 4.0
0.75 8.0
Journal of Applied Mechanics
tained for two steel particle diameters of 12.7 and 9.53 mm at-
tached separately to a wire of 70 mm length. The results showed
no effect of the particle diameter and agreed with the theoretical
prediction given by Eq. �23�, provided the wire length, cell am-
plitude and frequency, and liquid and solid densities are kept con-
stant. It is noted again that the values shown in Table 1 and Figs.
5–10 are the average values obtained from 15 to 20 experiments
for a given experimental condition.

Finally, the present theory predicts an asymptotic particle am-
plitude independent of the vibration frequency and wire length at
high cell vibration frequencies as given by Eq. �25�. The experi-
mental data obtained at high vibration frequencies, well above the
resonance frequency, validate this prediction as shown in Fig. 10.
The particle amplitude converges to a constant value for all vibra-
tion frequencies and is no longer dependent on the wire length as
predicted. For a cell vibration amplitude of 1.0 mm shown in Fig.
10, the asymptotic particle amplitude was measured to be
�0.83 mm, which agrees well with the value predicted by Eq.
�25� for a steel particle ��S=7,830 kg/m3� in water ��L

=997 kg/m3�. This indicates that for cell vibration frequencies
well above the resonance frequency, the motion of a spherical
particle suspended by a thin wire on the ground may correspond
to the motion of a wire-free particle in a fluid cell under micro-
gravity. This result establishes a firm basis on which the vibration-
induced particle motion in microgravity could be studied under
normal gravity on the ground.

5 Conclusions
A study of vibration-induced particle and fluid motion has been

conducted theoretically and experimentally. A series of experi-

h cell amplitude for different frequen-

herical particle of different diameters.

Particle Amplitude ��m�

particle 10.25 mm particle
Prediction

by Eq. �23�

35 36.0
72 72.0

0 150 144.0
0 160 154.2
0 315 308.4
0 620 616.7
0 420 393.4
0 815 786.9
0 1610 1573.7
wit
sp

m

35
70

14
16
30
60
40
79

158
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ments were conducted using steel particles of different diameters
in a water-filled rectangular container under different vibration
conditions. An inviscid model of a particle suspended in a fluid
cell by a thin wire was developed to predict the vibration-induced
particle motion. The inviscid fluid assumption is valid when the
inertial forces are more important than the viscous force, which is
equivalent to a very thin boundary layer compared to the particle
radius used as a characteristic length. The validity of this assump-
tion was supported by good agreement obtained between the
model predictions and the experimentally measured amplitudes
for a steel particle in water at different cell vibration amplitudes
and frequencies. In addition, the experimental results on the ef-
fects of the wire length on the particle amplitude, the resonance
frequency and the phase shift agreed well with the predictions of
the theoretical analysis. Finally, in accordance with the theoretical
prediction, the experiments performed at high cell vibration fre-
quencies showed that the particle amplitude is independent of the
wire length possibly corresponding to the case of a wire-free par-
ticle motion in microgravity.
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Nomenclature
a � cell vibration amplitude, m
A � particle amplitude in the cell frame of refer-

ence, m
f � vibration frequency, Hz
f � wire tension, N
g � gravitational acceleration, m/s2

i � direction of cell motion
L � distance from the attachment point to the cen-

ter of mass of the sphere, m
m � particle mass, kg
p � static pressure, N/m2

r � fluid element position with respect to the par-
ticle, m

R0 � particle radius, m
R � absolute position of the particle with respect to

the inertial system, m
Rp � position of the particle with respect to the cell

frame of reference, m
t � time, s

v � fluid velocity far away from the particle, m/s

Fig. 10 Particle amplitude variation with wire length for differ-
ent frequencies „steel ball, liquid: Water, cell amplitude:
1.0 mm…
�
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v � fluid velocity relative to the particle, m/s
Xp � horizontal displacement of the particle with

respect to the cell, m
�S � particle density, kg/m3

�L � liquid density, kg/m3

� � velocity potential, m2/s
� � cell vibration frequency, rad/s

�res � resonance frequency (=2�f�, rad/s
� � angle between the wire and the vertical, rad
� � liquid viscosity kg/m.s
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Large Eddy Simulation
of Rotating Finite
Source Convection
Numerical simulations of turbulent convection under the influence of rotation will help
understand mixing in oceanic flows. Though direct numerical simulations (DNS) can
accurately model rotating convective flows, this method is limited to small scale and low
speed flows. A large eddy simulation (LES) with the Smagorinsky subgrid scale model is
used to compute the time evolution of a rotating convection flow generated by a buoyancy
source of finite size at a relatively high Rayleigh number. Large eddy simulations with
eddy viscosity models have been used successfully for other rotating convective flows, so
the Smagorinsky model is a reasonable starting point. These results demonstrate that a
LES can be used to model larger scale rotating flows, and the resulting flow structure is
in good agreement with DNS and experimental results. These results also demonstrate
that the qualitative behavior of vorticies which form under the source depend on the
geometry of the flow. For source diameters that are small compared to the size of the
domain, the vortices propagate away from the source. On the other hand, if the ratio of
source diameter to domain size is relatively large, the vortices are constrained beneath
the source. Though the results are qualitatively similar to a direct numerical simulation
(DNS) and other LES, in this simulation the flow remains laminar much longer than the
DNS predicts. This particular flow is complicated by the turbulence transition between
the convective plume and the quiescent ambient fluid, and an eddy viscosity model is
inadequate to accurately model this type of flow. In addition, the Smagorinsky model is
not consistent in a noninertial reference frame. Thus the Smagorinsky model is not the
optimal choice for this type of flow. In particular, the estimation model has demonstrated
better results for other types of rotating flows and is the recommended subgrid scale
model for future work. �DOI: 10.1115/1.1991859�
1 Introduction
Convection or similar buoyancy effect due to gravitational forc-

ing can drive large scale oceanic circulations, including thermo-
haline circulations. Natural phenomena that cause buoyancy
driven circulations in the ocean include evaporation, extreme
weather conditions such as storms, freezing at the surface, and
heating through the ocean floor as a result of a megaplume event.
Of particular relevance to this study is the process of surface
water freezing, which causes a buoyancy driven flow due to in-
creased salinity just below the ice because the colder water cannot
hold as much dissolved salt �1–3�.

Some of the current research in environmental turbulent con-
vection focuses on deep water formation, which is thought to be
related to major climatic events �4�. Deep water is very cold,
fairly dense water, generally found in arctic regions. New deep
water formed near the surface tends to sink by creating a chimney,
which consists of a relatively homogeneous water column sur-
rounded by more stratified water �5�. Only extreme conditions can
cause sinking all the way to the ocean floor. Though such condi-
tions are not common, they are most often found in the Greenland
and Weddell Seas �6�. Initially, cooling simply deepens the mixed
layer near the surface. When the mixed layer reaches a certain
depth, a thermobaric instability occurs and the chimneys form.

Global oceanic circulation simulations are very important in the
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study of climatic change, but current models do not provide ad-
equate long-term predictions �4� of the flow field. Using field
studies and experiments to clarify the important physical pro-
cesses will assist in the development of better numerical models
that can be used on a larger scale. Localized simulations have had
more success, such as a numerical model of turbulent line buoyant
plumes which occur due to brine rejection when cracks in ice
refreeze �7�.

A direct numerical simulation �DNS� for an unstratified ambient
fluid has been performed successfully �8�. However, these detailes
require hundreds of hours of CPU time and 16 million grid point
simulations even for a flow field bordering on the turbulent re-
gime. DNS techniques give an “exact” solution to the governing
equation but are limited to relatively low Reynolds number due to
insufficient computational resources. By using a large eddy simu-
lation �LES�, which involves modeling the small scales and re-
solving only the large scales, a similar computation could be per-
formed using half a million grid points and less than 100 hours of
CPU time. The current study involves using a LES to simulate
rotating turbulent convection with a finite source. Detailed quan-
titative comparisons between these computations and the DNS of
�8� and the LES of �9� would validate the use of the Smagorinsky
model for this type of flow.

2 Background
For large scale geophysical flows, the Coriolis effect due to the

rotation of the earth becomes an important influence in the evolu-
tion of the flow. When significant rotation is added to turbulent
Rayleigh-Bérnard convection, the cells orient radially as a result
of the radial acceleration which increases with increasing radius.
Higher rotation rates break up these rolls and very high rotation

induces the formation of cyclonic and anticyclonic vortices. The
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structure of high Rayleigh number turbulent convective flows un-
der the influence of rotation has been previously investigated ex-
perimentally by Rossby �10�, Boubnov and Golitsyn �11�,
Fernando et al. �12�, Brickman and Kelly �13�, and Maxworthy
and Narimousa �14�. Field studies in arctic regions �15,16� exam-
ine the chimney structure and corroborate well with experimental
results. Because of the very large scale of oceanic flows, simula-
tion of a realistic geophysical flow field is still beyond the capa-
bilities of current computational resources. However, recent
smaller scale simulations have been able to obtain flow fields that
agree well with experimental studies, including the DNS of Chan
�8� and LES of Jones and Marshall �9�, Lavelle and Baker �7�,
Julien et al. �17�, and Cui and Street �18�. In addition, some LES
studies of atmospheric flows have successfully used eddy viscos-
ity methods �19�.

The dimensionless parameters that define this type of flow are
the Rayleigh number, the Prandtl number, and the Taylor number.
The Rayleigh number, which represents the ratio of buoyancy
forces to viscous forces, can be expressed in terms of the surface
buoyancy flux

Raf =
BoH4

�2�
�1�

where

Bo =
�g� �T

�z

�ocp
�2�

which is the buoyancy flux of the fluid resulting from an imposed
temperature gradient at the boundary. The Taylor number �Ta�,
which represents the ratio of rotational forces to viscous forces,
and the Prandlt number �Pr�, which gives the relative importance
of the momentum diffusivity to the thermal diffusivity, are ex-
pressed as follows:

Ta =
4�2H4

�2 �3�

and

Pr = �/� �4�

The previous parameters are based on molecular quantities. How-
ever, this flow may be better described using parameters that do
not depend on molecular quantities. For instance, a natural Rossby
number Ro* is defined as

Ro* =
Bo

1/2

f3/2H
= Raf

1/2Pr−1Ta−3/4 �5�

which is less than one when rotational effects are significant.

3 Numerical Methodology
The governing equations are the incompressible Navier-Stokes

equations with the Boussinesq approximation plus the energy
equation. The LES equations are obtained by applying spatial fil-
tering to the governing equations. The spatial filtering is defined
by the integral relation

f̄�x� =� f�x��G�x�dx� �6�

where G�x� is the Fourier cutoff filter and the overbar � f̄� repre-
sents a filtered quantity. The filtered equations in nondimensional
form are

� ūj = 0 �7�

�xj
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� ūi

�t
+

� ūiūj

�xj
+ �Ta Pr ūj�ij3 = −

�P

�xi
+ Pr

�2ūi

�xj � xj
−

�

�xj
�ij

+ Pr RafT̄�i3 �8�

�T̄

�t
+

� ūjT̄

�xj
=

�2T̄

�xj � xj
+

�

�xj
�	j + FT �9�

where FT is a nondimensional forcing term that is used to apply a
buoyancy. The above equations are nondimensionalized using the
characteristic length, time, and temperature scales H, H/�2, and
�BoH� / ��g��, respectively.

The effects of the turbulent scales, or unresolved subgrid scales
�SGS�, removed by the filtering operation on the filtered �re-
solved� scales is accounted for by the following subgrid scale
quantities:

�ij = uiuj − ūiūj �10�

�	j = ujT − ūiT̄ �11�
These SGS stresses are modeled in terms of the resolved quanti-
ties.

Since the Smagorinsky model is relatively simple and similar
eddy viscosity models have been successfully applied to oceanic
convection �20�, this subgrid scale model is a reasonable starting
point for this study. The Smagorinsky model uses an eddy viscos-
ity to define the subgrid scale stresses as

�ij = − 2�TS̄ij +
1

3
�kk�ij �12�

�	j =
�T

PrT

�T̄

�xj
�13�

where PrT=1 and the resolved rate of strain tensor S̄ij is defined as

Sij =
1

2
� � ūi

�xj
+

� ūj

�xi
� �14�

For the Smagorinsky model, the eddy viscosity is defined as

�T = 	�Cs
�2�2S̄ij −
Raf

Pr PrT

�T̄

�xi
�1/2

if�2S̄ij −
Raf

Pr PrT

�T̄

�xi
� � 0

0 otherwise



�15�
which includes a term to take into account mixing due to statically
unstable conditions �21�. Several attempts at calculating an opti-
mal value for Cs using theoretical methods �22,23� have produced
values between 0.1 and 0.2. The present study uses Cs=0.21
which is a typical value for turbulent convection �24�. The turbu-
lent Prandlt number PrT��T /�T=1, and 
, a length scale deter-
mined by the mesh size, is usually defined as


 = �
x
y
z�1/3 �16�

For wall bounded flows, the maximum 
z is often an order of
magnitude greater than the minimum value due to the finer grid
spacing near the wall. An alternative definition for 
 which would
keep it constant throughout the domain is


 = 
x = 
y �17�

These equations are solved numerically using a pseudospectral
code developed by Chan �8�, and the Smagorinsky model was
implemented exactly as in �24�. By performing the vertical deriva-
tives in spectral space and using Legendre-Gauss-Lobatto collo-
cation points, in which the grid points in the z direction are more
finely spaced near the boundaries, the vertical derivatives can be
computed almost exactly. Temporal advancement is accomplished

using the Crank-Nicolson scheme for the viscous terms and the
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Adams-Bashforth method for the advective terms and subgrid
scale stresses.

4 Description of Flow
The current work uses the LES method to study thermal plumes

and chimneys in a rotating reference frame. The three-dimensional
rectangular domain with periodic boundary conditions in the hori-
zontal directions and a no-slip, insulated bottom boundary is
shown in Fig. 1. The depth of the domain H is defined to be 1. The
horizontal dimensions, Lx and Ly are large enough so that the flow
at the boundaries is not influenced by the developing plume dur-
ing the time of the simulation. The top surface boundary condi-
tions are stress free for the velocity and a circular heat source of
radius D/2 centered on the surface for the temperature. The mag-
nitude of the circular finite source varies from a maximum in the
center to zero at the edge, and the rest of the boundary is insu-
lated.

The buoyancy force on the surface can be treated either as a
boundary condition or as a forcing function in the simulation dis-
tributed over a finite depth hs �9�. The latter method is used in this
study because it gives better agreement with DNS �25�.

Though the DNS has a noslip top surface, this boundary con-
dition is impractical for LES because the Smagorinsky model re-
quires wall functions for proper behavior near a solid boundary.
However, no wall function exists to impose proper behavior near
the boundary for flow without a mean shear, so the eddy viscosity
is not predicted properly very close to the wall �25�.

The heat flux source is implemented by setting

Table 1 Parameters for LES simulations for Ro*=0.1, Lx=16, an
Smagorinsky model is being used.

Raf Ta Ro* Boa

T1 5�1010 3�108 0.1 0.4
T2 5�1010 3�108 0.1 0.4
T3 5�1010 3�108 0.1 0.7
T3a 5�1010 3�108 0.1 1.0
T4 5�1010 3�108 0.1 1.0
T5 5�1010 3�108 0.1 1.0
T6 5�1010 0.0 � 1.0
T7 8�108 4�106 0.33 1.0
T8 5�1010 3�108 0.1 0.4
JM1 8�108 9.6�108 0.1 1.0
JM2 8�108 4�106 0.33 1.0
JM3 8�108 400 316 1.0

Fig. 1 Computational domain and boundary conditions for ro-
tating finite source convection
Journal of Applied Mechanics
FT = 	 − 2
1−�1−z�/hs

hs
r � runif

1−�1−z�/hs

hs

Bo

�g�1.0 + cos�r−runif�
D
2

−runif
�� r � D/2 and z � hs

0 r � D/2 or z � hs



�18�

in Eq. �9�. The forcing is applied over the top 6% of the domain
and is scaled so that it would be equivalent to a concentrated heat
flux of Bo applied on the upper surface as a boundary condition.

The development of a flow field due to a finite circular cooling
source at the surface in the presence of rotation occurs in three
stages. Initially, the flow is laminar natural convection. If the Ray-
leigh number is high enough, individual plumes start to develop
from the mixed layer signifying the onset of turbulence. The flow
behavior is convection dominated until the mixed layer reaches a
critical depth. Then the rotation starts limiting the horizontal
spreading of the plumes. Eventually the flow becomes quasi-two-
dimensional and geostrophic in which the pressure forces balance
the Coriolis force. For higher rotation rates and larger Rayleigh
numbers, the flow becomes more three-dimensional and less geo-
strophic. For small Dx /L, the plume begins to spread when it hits
the bottom, but for large Dx /L, the plume remains confined to the
region below the source.

5 Results
Results for a convection-dominated case were promising when

compared with DNS results �8� for Raf =107 and Ta=106. LES of
a rotating finite source were computed with Raf =5�1010 and
Ta=3�108 for a large D /Lx of 1/2 and a small D /Lx of 1/5.
Since the purpose of LES is to attempt to simulate more realistic
flows, a relatively high Rayleigh number was chosen. However,
the natural Rossby number �10�, which is most representative of
the type of flow �flow regime�, and the D /Lx were chosen to
enable comparison with the LES of Jones and Marshall �9�, here-
after referred to as JM, and with the DNS of Chan �8�. JM is a
prior numerical study with this type of domain and more recent
studies have used their results for comparison. Ro*=0.1 for most
of these simulations, which puts the flow in the transitional re-
gime. The LES was initialized with zero temperature and velocity
fields. A distributed source boundary condition and a free surface
are applied at the upper surface, with an insulated no-slip bottom
boundary, similar to the boundary conditions used by JM. All
quantities are nondimensionalized by a characteristic length scale,
H, temperature scale BoH /�g� and velocity scale � /H.

5.1 Large D /Lx Case. The sensitivity of the computation to
the grid spacing, eddy viscosity model, and surface heat flux was

ource radius=4. Note that the value of � is only relevant if the

�T model 
 Grid

Smagorinsky 
x 128�128�33
Smagorinsky �
x
y
z�1/3 128�128�33

�T=25 128�128�33
�T=25 128�128�33

Smagorinsky �
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y
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studied, and these results were compared with the results of JM.
JM performed an LES using finite differencing spacial discretiza-
tion with a constant eddy viscosity which is 25 times larger in the
horizontal direction than in the vertical. The parameters for the
simulations of the current study as well as those from the relevant
JM cases are shown in Table 1. Horizontally averaged velocity,
uH= �u2+v2�1/2 / �BoH�1/3, and reduced gravity g� vertical profiles
are presented for all cases after two rotation periods. In the fol-
lowing discussion, unless otherwise specified, Ro*=0.1.

As shown by temperature contours in a vertical slice through
the center of the domain in Fig. 2, the plumes take about 1 1/2
rotations to reach the bottom boundary. This plume development
is slower than in the results of JM in which it takes less than one
rotation since the eddy viscosity in JM is significant even when
the velocity is small. Though the horizontal velocity field through
a horizontal cross section �Fig. 3� is qualitatively comparable, the
vortices in JM are well developed within the first rotation. How-
ever, in this study, they are barely starting to appear after 1 1/2
rotations. This difference is likely due to the difference between
the subgrid scale models and the computational methods. The cur-
rent study uses very accurate finite differencing in the vertical
direction while JM uses a finite difference which would have sig-
nificant artificial viscosity. Also, the eddy viscosity for the Sma-
gorinsky model becomes very small if the flow rate is very low
and no significant velocity or temperature gradients exist. Since
JM uses a constant viscosity, a large thermal diffusivity is present
even in the absence of flow which would result in faster growing
plumes. The major differences between the current study and JM
are the magnitude and distribution of the heat flux, the grid spac-
ing, and the eddy viscosity model. The following discussion of
horizontally averaged vertical profiles show that the current study
can reproduce the shape of the curves in JM but not the magni-
tude. The sensitivity of the results to these differences is examined
in an attempt to see which of them, if any, can account for the
discrepancies between the current study and JM.

The JM simulations had a constant buoyancy flux of Bo=1.0
over the entire source while the present simulation required a
buoyancy flux which was tapered as shown in Fig. 1. This variable
buoyancy flux is computed in Eq. �18� and is characterized by an
average value Boavg computed by integrating Bo, over the source.
With Bomax=1.0 and runif=0.25, Boavg=0.42. To create a more
uniform distribution of Bo, runif was increased to 0.75, which re-
sulted in Boavg=0.71. As a final test, the maximum Bo, the value in
the runif region, was modified so that Boavg=1.0 and the total
buoyancy flux would be the same as JM. Using the constant eddy
viscosity model �case T3a�, the plume saturated the entire domain
well before two rotations, so results for this buoyancy flux are
presented with the Smagorinsky model. After two rotations, the
horizontally averaged velocity and reduced gravity profiles for
these three buoyancy fluxes are compared with the JM simulations

Fig. 2 Development of thermal plume for run T1 with Raf=5
Ã1010, Ta=3Ã108, D /Lx=1/2
as shown in Fig. 4. An increase in the buoyancy flux causes an

82 / Vol. 73, JANUARY 2006
increase in the velocity and reduced gravity vertical profiles
slightly. The reduced gravity profile exhibits reasonable agree-
ment with JM results, but the velocity is approximately a factor of
2 less than JM for a similar average buoyancy flux. On the other
hand, the shape of the profile near the top and bottom demonstrate
correct near wall behavior in the current study but not in JM.

Next, the effect of the eddy viscosity model is examined. As
previously discussed, JM used a constant eddy viscosity in both
space and time, which is 25 times larger in the horizontal direction
than in the vertical direction. In an attempt to obtain a more ac-

Fig. 3 Horizontal velocity field for run T1 with Raf=5Ã1010,
Ta=3Ã108, and D /Lx=1/2
curate simulation, the Smagorinsky eddy viscosity model was
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Symbols: �T=constant; o: cases T8, T3; +: JM1.

g�. No symbols: - T1;–T2; -. T8; Symbols: JM1.

Journal of Applied Mechanics
chosen, which varies in both space and time to represent the
changing conditions of the flow, including becoming zero when
no flow is present. Three different eddy viscosity models were
examined. One with a constant eddy viscosity equivalent to the
vertical eddy viscosity in JM and the Smagorinsky model with
two different values of the length scale 
: one which varies in
space �Eq. �16��, and one which is constant �Eq. �17��. The result-
ing horizontally averaged vertical profiles in Fig. 5 for each of
these cases show that the simulation is not particularly sensitive to
the eddy viscosity model. Although the shapes of the horizontal
velocity and reduced gravity profiles are similar to JM, the veloc-
ity magnitudes are smaller by a factor of two.

To check if the finer vertical resolution of the current LES can
explain the discrepancy, a simulation with only 23 grid points in
the vertical direction is compared with JM, as shown in Fig. 6.
These two Smagorinsky simulations give the same results for both
resolutions indicating that the grid size does not account for the
difference between the current LES and JM and that the LES is
properly resolved.

Finally, the simulations using the Smagorinsky model at several
natural Rossby numbers are shown in Fig. 7. The current results
show a smaller boundary layer region at the no-slip bottom sur-
face for a smaller Rossby number, which is not reproduced in JM.

H and „b… g�. No symbols: Smagorinsky model, runs T2, T4.
Fig. 4 Effect of varying average surface buoyancy flux for „a… u
Fig. 5 Effect of varying eddy viscosity model for „a… uH and „b…

Even though the velocity profiles are approximately a factor of
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two less than JM, the shapes of the profiles and the significant
decrease in magnitude with the addition of rotation are repre-
sented in both simulations.

5.2 Small D /Lx Case. Since the Smagorinsky model tries to
reproduce more of the physics of the flow than a constant eddy
viscosity model, perhaps a comparison with DNS data will be
favorable. The relevant parameters of both simulations are pre-
sented in Table 2. The simulation presented in this section is simi-
lar to those of the previous section, except that the D /Lx param-
eter is significantly smaller to match the geometry of the DNS. As
a result, changes in the flow due to the differences in the geometry

Table 2 Parameters for simulations with Ro*=0.1, Lx=7.5, s
= „�x�y�z…

„1/3…

Raf Ta

Rotation
Period

=4 /�Ta

LES 5�1010 3�108 7.25�10−

DNS �4� 109 2.5�107 2.52�10−

Fig. 6 Effect of vertical grid spacing for „a… uH and „b… g�. No
symbols: runs T4, T5; Symbols: JM1.

Fig. 7 Effect of varying Ro* for „a… uH and „b… g�. No symbols:
runs T6, T7, T8; Symbols: JM1, JM2, JM3.
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will also be discussed.
This simulation ran for 3 1/2 rotations. After 1 1/2 rotations,

rotational effects had not yet become dominant, but, after 3 1/2
rotations, the LES results look more promising as shown in Figs.
8 and 9. The vertical temperature contours in Fig. 8 show that the
plume has started spreading along the bottom. On the other hand,
the plume in the DNS computation reached the bottom within
1 1/2 rotations as shown in Fig. 10. The horizontal flow field after
3 1/2 rotations in Fig. 9 is more similar to the DNS at 1.3 rota-
tions, shown in Fig. 11, than at 3.3 rotations. Like the DNS, the
LES shows vortices that separate from the region under the source
and move outward which is consistent with observations �26�. The
horizontal flow fields illustrate the major differences in the flow as
a result of changing D /Lx. According to these simulations, the
larger D /Lx of 0.5 contains a series of smaller vortices which stay
confined underneath the source while the smaller D /Lx of 0.2
seems to have larger vortices which eventually split from the
source and move outward. D /Lx=0.4 in both the experiments of
Coates et al. �27� and the simulations of Cui and Street �18� is
between the two values examined in the current simulations. Their
results showed vortices underneath the source with a well-defined
rim current at the edge of the source. However, they did not men-
tion any observations of vortices propagating away from the
source, and JM did not observe a well-defined rim current. It is
possible that these differences in flow structure beneath the source
depend on D /Lx. Brickman and Kelly �13� observed these differ-
ences in flow structure in their observations of the evolution of a
rotating convective plume. First a tendril phase, which is convec-
tively dominated, characterized by small, thin plumes. Second,
they call the formation of the horizontal vortices the convecting
vortex phase, similar to the horizontal vortex structure of the large
D /Lx. Finally, the frontal instability phase occurs when larger
scale frontal vortices form, similar to the small D /Lx case. Brick-
man and Kelly �13� perform experiments with one large D /Lx and
one small D /Lx. Though any differences resulting from the differ-
ent source sizes are not mentioned, pictures of the frontal insta-
bility phase are shown only for the small D /Lx case.

Though asymmetry due to random small-scale fluctuations is an
important property of turbulent flows, the contours for both the
large D /Lx and this case are very symmetric as shown in both the
horizontal and vertical instantaneous profiles. In the DNS and in
JM as well as most turbulence simulations, instantaneous profiles

rce radius=0.75; LES uses the Smagorinsky model with �

Grid

Velocity
boundary
condition

Temperature
boundary
condition

128�128�33 Stress free Insulated
256�256�65 No slip Dt /dz=−1

Fig. 8 Development of thermal plume for LES with Raf=5
Ã1010, Ta=3Ã108, and D /Lx=1/5 at time=3.5�
ou

4

3

Transactions of the ASME



time=3 1/2� „†4‡ Fig. 3.83b…
tend to be asymmetric and contain random small-scale fluctua-
tions which are often due to random perturbations in the initial
flow field. In this simulation, random perturbations in the initial
flow field were damped out and did not influence the instanta-
neous flow.

Azimuthally averaged quantities for this flow also contain some
favorable comparisons with the DNS. The reduced gravity, de-
fined as

Fig. 9 Horizontal velocity field through the center of the do-
main for LES with Raf=5Ã1010, Ta=3Ã108, and D /Lx=1/5 at
time=3.5�

Fig. 10 Thermal plume for DNS with Raf=109, Ta=2.5Ã107,

and D /Lx=1/5 in the Y=3.75 plane „ †4‡ Fig. 3.79…

Journal of Applied Mechanics
Fig. 11 Horizontal velocity field through the center of the do-
main for DNS with Raf=109, Ta=2.5Ã107, and D /Lx=1/5 at
Fig. 12 Azimuthally averaged quantities for LES with Raf=5
10 8
Ã10 , Ta=3Ã10 , and D /Lx=1/5 at time=3.5�
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g� = g
��

�o
�19�

is nondimensionalized by the buoyancy flux as follows:

g�

�BoH�2/3/H
=

T

BoH/�g�
Raf

1/3Pr1/3 �20�

Figure 12 shows that the plume in the LES has not developed as
much as in the DNS shown in Fig. 13, but the plume in the LES
has started spreading along the bottom, and the contours have the
same general shape and magnitude as the DNS. The azimuthally
averaged radial velocity is scaled relative to the buoyancy flux

ur

�BoH�1/3 =
ur

�/H
Raf

−1/3Pr1/3 �21�

ur qualitatively resembles the DNS results at time=3.3� but the
magnitude is slightly larger. The LES results are more similar to
the DNS at time=1.3�. These results emphasize that the devel-
opment of the flow lags behind the DNS results. The delayed
development may be a result of the different top boundary condi-
tions �stress-free, distributed source for LES and no-slip, concen-
trated source for DNS� as well as limitations of the Smagorinsky
model in a transitional flow.

6 Summary and Future Work
Though the LES results are qualitatively similar to the DNS,

better quantitative agreement is desirable. The Smagorinsky
model is unlikely to provide better agreement because of inherent
shortcomings of the model, which include the inability to cor-
rectly predict transitional flows and incorrect behavior in a nonin-
ertial reference frame. In addition, the flow stayed very symmetric

Fig. 13 Azimuthally averaged quantities for DNS with Raf
=109, Ta=2.5Ã107, and D /Lx=1/5 at time=3 1/2� „†4‡ Fig.
3.94b…
for the duration of the simulation which is not a physically correct
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result. This asymmetry may have occurred because the horizontal
component of the rotation vector was neglected. Though this as-
sumption is a common simplification, the presence of the horizon-
tal component of the rotation vector increases the asymmetry of
the flow �26�. These results do not yet agree with the DNS well
enough to confidently apply this subgrid scale model to higher
speed flows; they do give evidence that a proper subgrid scale
model could give very reasonable results for high Rayleigh num-
ber flows.

The present simulations show that the horizontal vortical struc-
ture depends on the ratio of the source diameter to domain size
�D /Lx�. With a small D /Lx, vortices form under the source and
propagate away; a larger D /Lx causes small �relative to the source
diameter� vortices to remain under the source. These observations
are consistent with other studies which also show the development
of a rim current at intermediate values of D /Lx.

One effect of a subgrid scale model is to increase the turbulent
energy in the large scales as a result of subgrid scale turbulence.
In this flow the region of greatest subgrid scale fluctuations would
be near the source. However, the Smagorinsky model predicts that
the region with the largest gradients would have the most signifi-
cant small-scale fluctuations. In this flow, the largest gradients are
at the edges of the plume where the velocity is very small. As a
result, the turbulent fluctuations do not propagate in the flow as
they probably do in the DNS, which would help explain why the
plume in this study develops more slowly. This shortcoming
would be characteristic of eddy viscosity models in general, so a
different type of subgrid scale model that could more accurately
identify regions of large subgrid scale quantities would probably
give better results.

For instance, the subgrid scale estimation model has been used
successfully in both high Reynolds number flows �28�, turbulent
convection �29�, and rotating turbulent convection �30� and does
not require a wall function for correct near wall behavior in shear
flows. In addition, the estimation subgrid scale model obeys trans-
formation rules required for the subgrid scale stress tensor in a
noninertial frame of reference �31�, and the LES results agree well
with DNS data for simple rotating turbulent flows �32�. Current
work on this project involves applying the estimation subgrid
scale model to rotating turbulent convection. Eventually, these
methods should enable simulations of higher Rayleigh numbers.
As shown in Table 3, the maximum Rayleigh number for numeri-
cal simulations is still far from that of a realistic geophysical flow.

In spite of inadequacies of the Smagorinsky model in transi-
tional flows, the LES simulations were able to reproduce some of
the qualitative features of the flow as well as demonstrating the
effect of the D /Lx on the flow field. The development of the
convective plume is similar to the DNS and experimental studies
but much slower, which is probably due to a combination of the
use of the distributed source boundary condition and the subgrid
scale model. The computed velocities are closer to the DNS re-
sults than the velocities computed by JM and the near wall region
behavior is more reasonable; in this instance, the Smagorinsky
model is more accurate than the constant eddy viscosity model.
Future work will focus on using LES methods to obtain reason-
able simulations at higher Rayleigh number flows. In this way, a
simulation with physically realistic parameters for geophysical

Table 3 Limiting parameters for different methods used for
studying rotating convection †10‡

Method Raf Ta

Observations �1025 �1014

Experiments �1020 �1010

Turbulence simulations �1010 �108
flows can be developed.

Transactions of the ASME



Acknowledgment
The authors thank Dr. D. Chan for providing the numerical

code used in the work and for allowing us to use his figures.

Nomenclature
All quantities have been nondimensionalized by length scale H
�depth of the computational domain� and the velocity scale � /H.

Bo � buoyancy flux
Boavg � average buoyancy flux over the circular source
Bomax � maximum buoyancy flux in the circular source

cp � specific gravity
CS � Smagorinsky model constant
D � diameter of finite buoyancy source
f � period of rotation

f�x� � unfiltered function

f̄�x� � filtered function �resolved on LES grid�
FT � buoyancy forcing term

g � acceleration due to gravity
G�x� � filter function

g� � reduced gravity
H � depth of computational domain
hs � depth to which buoyancy flux is applied

Lx ,Ly � horizontal size of computational domain
P � pressure

Pr � Prandtl number
PrT � turbulent Prandtl number

r � radial distance from source center in horizontal
plane

Raf � Rayleigh number defined based on buoyancy
flux

Ro* � natural Rossby number
runif � radius of uniform region in the buoyancy

source
Sij � rate of strain tensor
T � temperature

Ta � Taylor number
uH � horizontally averaged velocity
ui � component of velocity

x,y,z � coordinate directions in physical space
� � volumetric thermal expansion coefficient

�ij � kronecker delta

 � factor in Smagorinsky model which depends

on the mesh size

x, 
y, 
z � grid cell sizes in the x, y, and z directions

�ijk � alternating unit tensor
� � period of rotation
� � thermal diffusivity
� � molecular diffusivity

�h � constant eddy viscosity in the horizontal direc-
tion �used in �5��

�T � eddy viscosity for present study
�v � constant eddy viscosity in the vertical direction

�used in �5��
�o � density of ambient fluid
� � local fluid density

� � rotation rate of frame of reference
�ij � subgrid scale stress tensor
�	j � subgrid scale heat transfer
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Natural Steady Convection
in a Space Annulus Between
Two Elliptic Confocal Ducts:
Influence of the Slope Angle
The authors express the Boussinesq equations of the laminar thermal and natural con-
vection, in the case of permanent and bidimensional flow, in an annular space between
two confocal elliptic cylinders. The latter is oriented at an arbitrary angle � with respect
to the gravity force, using the elliptic coordinates system. A new calculation code using
the finite volumes with the primitive functions (velocity-pressure formulation) is pro-
posed. The Prandtl number is fixed at 0.7 (case of the air) with varying the Rayleigh
number. The effect of the system inclination is examined. �DOI: 10.1115/1.2041656�
1 Introduction
Heat transfer by natural convection, in an annular space delim-

ited by two concentric or eccentric horizontal cylinders, was the
subject of many theoretical and experimental studies because of
their importance in many engineering applications.

The majority of these studies are related to cylinders, whose
cross sections are circular, and whose walls are maintained at
constant temperatures. Mack and Bishop �1� made a study in an
annular space ranging between two horizontal concentric cylin-
ders. They employed a power series truncated at the third power
of the Rayleigh number to represent the stream function and tem-
perature variables. Their results pertain to radius ratios from 1.15
to 4.15, Prandtl numbers between 0.02 and 6.106 and Rayleigh
numbers less than or equal to 3000.

The work of Kuehn and Goldstein �2� can be referred to as a
comprehensive review for concentric cases. They compared the
obtained experimental and numerical results using a method with
finite differences. They discuss the influence of the Prandtl num-
ber and the ratio of the diameters for a Rayleigh number of about
104. The experimental and analytical studies for the eccentric
cases include the work of Kuehn and Goldstein �3�, Guj and Stella
�4�.

Comparatively, fewer publications were found for natural con-
vection in non-circular domain, e.g., the elliptic domain consid-
ered in this study. Lee and Lee �5� attempted to formulate the free
convection problem in terms of elliptical coordinates for the sym-
metrical cases of oblate and prolate elliptical annuli and have
performed experiments for this geometry. Schreiber and Shingh
�6� treated the same case numerically by using the method of the
spectral development in series, to reduce the partial derivative
equations with three systems of differential equations of the sec-
ond order. Elshamy et al. �7� studied numerically the case in the
horizontal confocal elliptical annulus and developed some practi-
cal correlations for the average Nusselt number. Chmaissem et al.
�8� simulated the case of natural convection in an annular space:
having a horizontal axis bounded by circular and elliptical isother-
mal cylinders. They used a calculation code for the original finite
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element method that utilizes Cartesian coordinates, vorticity,
stream function, and triangular elements �P1� associated with an
iterative technique to solve the matrix system. Cheng and Chao
�9� employed the body-fitted coordinate transformation method to
generate a non-staggered curvilinear coordinate system and per-
formed numerical study for some horizontal eccentric elliptical
annuli.

In the numerical simulation of natural convection in elliptical
space annuli, finite difference, finite volume, and finite element
methods were usually used with the vorticity-stream function for-
mulation. For example, the work of Guj and Stella �10� was con-
ducted by the finite difference method, Shreiber and Singh �6� and
Chmaissem et al. �8� used the finite element method, Elshamy
et al. �7� and Cheng and Chao �9� used the finite volume method,
and in the study of Zhu et al. �11� the natural convective heat
transfer was simulated using the differential quadrature method.

In this work we use a new calculation code with the finite
volumes �12–14� which uses the elliptic coordinates and the
primitive functions �velocity-pressure formulation�, associated
with the traditional SIMPLER algorithm �12,14�, in order to re-
solve our system of equations. The grid is made of 130�60
nodes.

2 Problem Formulation and Basic Equations
Let us consider an annular space, filled with a Newtonian fluid,

and located between two confocal elliptic cylinders of horizontal
axes. Figure 1 represents a cross section of the system. Both in-
ternal and external walls are maintained, respectively, at the tem-
peratures T1 and T2 with T1�T2. The physical properties of the
fluid are constant, apart from the density � whose variations are at
the origin of the natural convection. Viscous dissipation is ne-
glected, just as the radiation �emissive properties of the two walls
being neglected�. We admit that the problem is bidimensional,
permanent, and laminar.

The laminar natural convection equations within the framework
of the Boussinesq approximation are written in vectorial form

– Continuity equation:

div V = 0 �1�
– Momentum equation:

�V · grad�V =
�

�0
g +

��

�0
�2�
– Heat equation:
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�V · grad�T =
�

�Cp
�2T �3�

It is convenient to define a reference frame such as the limits of
the system result in constant values of the coordinates. The coor-
dinates known as “elliptic” �� ,�� allow in our case to obtain
precisely this result. The wall of the external elliptic cylinder is
represented by �=�2=constant, while for the interior elliptic cyl-
inder by �=�1=constant.

The passage of the Cartesian coordinates to the elliptic coordi-
nates is obtained by the following relations:

�x = ach� cos �

y = ash� sin �
� �4�

The metric coefficients in elliptic coordinates are given by

�h1 = h2 = h = a�sh2� + sin2 ��1/2

h3 = 1
� �5�

The gravity vector g is written in the new system of coordinates
as

g = − g�a�sh� cos � sin � + ch� sin � cos ��
h

e�

+
a�sh� cos � cos � − ch� sin � sin ��

h
e�� �6�

We pass directly to the writing of dimensionless equations, by
posing the following dimensionless quantities:

Let us pose

h* =
h

a
= �sh2� + sin2��1/2, V�

* =
V�

�	/a�
, V�

* =
V�

�	/a�
, P*

=
P − P0

�0�	2/a2�
and T* =

T − T2

T1 − T2

with
characteristic length: a
characteristic velocity: v /a
so let us introduce the following dimensionless numbers:

– The Prandtl number: Pr=v�cp /�
– The Grashof number: Gr=g
a3 /v2�T

After some lengthy manipulations, the following set of equa-
tions, is obtained:

Equation �1� becomes:

�
�h*V�

*� +
�

�h*V�
*� = 0 �7�

Fig. 1 A cross section of the system
�� ��
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Projection of Eq. �2� following the � axis gives

1

h*2� �

��
�h*V�

*V�
*� +

�

��
�h*V�

*V�
*��

= −
1

h*

�P*

��
+ GrT* �sh� cos � sin � + ch� sin � cos ��

h*

+
2

h*2

�2V�
*

��2 +
1

h*2

�2V�
*

��2 −
1

h*2

�

��
�V�

*

h*

�h*

��
� +

2

h*2

�

��
�V�

*

h*

�h*

��
�

+
1

h*2

�

��
�h* �

��
	V�

*

h* 
� +
1

h*2� �

��
	V�

*

h* 
 +
�

��
	V�

*

h* 
� �h*

��

−
2

h*2� 1

h*

�V�
*

��
+

V�
*

h*

�h*

��
� �h*

��
+

1

h*2V�
*2�h*

��
−

1

h*2V�
*V�

*�h*

��

�8�

And following the � axis, it gives

1

h*2� �

��
�h*V�

*V�
*� +

�

��
�h*V�

*V�
*��

= −
1

h*

�P*

��
+ GrT* �sh� cos � cos � − ch� sin � sin ��

h*

+
1

h*2

�2V�
*

��2 +
2

h*2

�2V�
*

��2 −
1

h*2

�

��
�V�

*

h*

�h*

��
�

+
2
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�

��
�V�

*

h*

�h*

��
� +

1

h*2� �

��
	V�

*
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 +
�

��
	V�

*

h* 
� �h*

��

−
2

h*2� 1

h*

�V�
*

��
+

V�
*

h*

�h*

��
� �h*

��
+

1

h*2V�
*2�h*

��

Fig. 2 Physical domain and computational domain

Fig. 3 A typical control volume and its neighbors in a

computational
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−
1

h*2V�
*V�

*�h*

��
+

1

h*2

�

��
�h* �

��
	V�

*

h* 
� �9�

And finally Eq. �3� becomes

� �

��
�h*V�

*T*� +
�

��
�h*V�

*T*�� =
1

Pr
� �2T*

��2 +
�2T*

��2 � �10�

The boundary conditions are the following ones:

– Conditions on the inner surface ��=�i=constant�:

�V�
* = V�

* = 0

T1
* = 1

� �11�

– Conditions on the outer surface ��=�e=constant�:

�V�
* = V�

* = 0

T2
* = 0

� �12�

To evaluate the stream’s function values, we use the following
relations:

�V�
* =

1

h*

��*

��
, V�

* = −
1

h*

��*

��
� �13�

3 Numerical Method
To solve Eqs. �8�–�10� with associated boundary conditions

�Eqs. �11� and �12��, we consider a numerical solution by the
method of finite volumes, presented by Patankar �12� and Nogo-
tov �13�.

Table 1 Sources an

Variable  Source S

V�
*

−
1

h*

�P*

��
+GrT*

�sh� cos � sin �+ch� sin �

h*

+
2

h*2

�

�� �V�
*

h*

�h*

�� �+
1

h*2

�

�� �h* �

�� �V�
*

h* ��+
1

h*2

−
2

h*2 � 1

h*

�V�
*

��
+

V�
*

h*2

�h*

�� ��h*

��
+

1

h*2V�
*2

V�
*

−
1

h*

�P*

��
+GrT*

�sh� cos � cos �−ch� sin �

h*

+
2

h*2

�

�� �V�
*

h*

�h*

�� �+
1

h*2

�

�� �h* �

�� �V�
*

h* �� 1

h*2

−
2

h*2 � 1

h*

�V�
*

��
+

V�
*

h*2

�h*

�� ��h*

��
+

1

h*2V�
*2

T* 0

Table 2 Variation of the average Nusselt number accordin

21�15 31�20 41�25 51�31 61�40 71

Ra 50 0.95 0.97 0.98 0.98 1.02 1
500 2.18 2.21 2.24 2.26 2.27 2
104 2.89 2.91 2.94 3.09 3.17 3

5.105 6.75 6.81 6.87 6.95 7.01 7
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Figure 2 shows both the physical and the computational do-
main. Figure 3 shows one typical control volume and its neigh-
bors in a computational domain.

We cut out the annular space according to directions � and �
from the whole of elementary volumes or “control volumes” equal
to “h*2

����.” The problem is bidimensional, the thickness in z
direction is assumed to the unity.

The center of a typical control volume is a point P and the
center of its side faces “east,” “west,” “north” and “south,” which
are the points e, w, n and s, respectively. Four other control vol-
umes surround each interior control volume. The centers of these
volumes are points E, W, N and S. While the scalar variables
�pressures, temperatures� are stored at the points centered in con-
trol volumes, the four velocities components are stored in the
centers of the side faces of control volumes �12�. The transfer
equations of the scalar variables are integrated in typical control
volume; however, those of the velocities components are inte-
grated in staggered control volumes �12�. The control volume of
the horizontal component is staggered towards the right and that
of the vertical component is staggered upwards. It is well known
that this shift is necessary to avoid certain numerical instabilities
�12�.

3.1 Discretization Equation Transfer of a Variable �. The
general differential equation is

�

��
�h*V�

*� +
�

��
�h*V�

*� =
�

��
	�

�

��

 +

�

��
	�

�

��

 + S

�14�
We illustrate sources and diffusion coefficients in Table 1.

iffusion coefficients

Coefficient �

��
−

1

h*2

�

�� �V�
*

h*

�h*

�� �
�V�

*

h* �+
�

�� �V�
*

h* ���h*

��

−
1

h*2V�
*V�

*�h*

��

��
2

��
1

��
−

1

h*2

�

�� �V�
*

h*

�h*

�� �
�V�

*

h* �+
�

�� �V�
*

h* ���h*

��

−
1

h*2V�
*V�

*�h*

��

��
1

��
2

1

Pr

to the number of nodes for e1=0.86, e2=0.4, and �=0 deg

mber of nodes

0 81�56 91�60 101�70 130�60 135�65 140�70

1.06 1.09 1.11 1.12 1.12 1.12
2.28 2.28 2.29 2.31 2.30 2.29
3.35 3.37 3.40 3.41 3.41 3.41
7.25 7.29 7.31 7.30 7.31 7.31
d d

cos

� �

��

�h*

��

sin

� �

��

�h*

��
g

Nu

�5

.04

.27

.26

.14
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The discretization equation is obtained by integrating the con-
servation equation over the control volume shown in Fig. 3, after
some manipulations �12–14�; we have the final discretization
equation

app = aEE + aWW + aNN + aSS + S �15�
The equation coefficients are well defined in �12�, the power

law scheme is used to discretize the convective terms in the gov-
erning equations.

The discretization equations of the boundary conditions are
written in the same form of Eq. �15�.

The algorithm of SIMPLER �12� is used for the sequential so-
lution of the system of equations of discretization. The iterative
numerical solution of the algebraic system of equations is that of
sweeping implying the tridiagonal algorithms of Thomas and
cyclic.

Once the temperature distribution is available, the local Nusselt
number in the physical domain is defined as

Nu = −
1

h*

�T*

��
�16�

The average Nusselt number is obtained by integrating the local
Nusselt numbers around the walls

Nu =
1

2�
�

−�

+�

Nu d� �17�

4 Results and Discussion
We consider two annular spaces characterized by the eccentric-

ity of the internal elliptic tube �e1=0.688,e2=0.5� and �e1
=0.86,e2=0.6�.

We use four values for the Rayleigh number Ra �Ra=103, Ra
=5.104, Ra=105, and Ra=5.105�. The fluid is assumed as air, so
the number of Prandtl is supposed to be constant and equal to 0.7.

4.1 Grid Study. In this study several grids were used arbi-
trarily, to see their effect on the results. Tables 2 and 3 show us the
variation of the average Nusselt number according to the number
of nodes for each grid. We choose the grid 130�60 from which
we notice that the average Nusselt number does not vary signifi-
cantly anymore.

4.2 Numerical Code Validation. An annular space ranging
between two confocal and horizontal elliptic cylinders �7� has
been considered. We present in Fig. 4 the streamlines and the
isotherms resulting from our calculation code with the same pa-
rameters used by Elshamy et al. �7�. By comparing this figure with
Figs. 9 and 10 of Ref. �7�, we can notice that the results are
similar. Further, we gather in Table 4 the average Nusselt num-
ber’s values on the two walls resulting from our calculations and
those of Ref. �7�. Furthermore, we can notice that these values are
in a good agreement.

4.3 Influence of the Rayleigh Number. Figure 5–8 represent
the isotherms and the streamlines for different Rayleigh number
values.

Table 3 Variation of the average Nusselt number accordin

21�15 31�20 41�25 51�31 61�40 71

Ra 50 0.82 0.85 0.95 0.99 1.01 1
500 1.36 1.40 1.45 1.50 1.56 1
104 2.54 2.57 2.58 2.60 2.64 2

5.105 6.07 6.10 6.12 6.16 6.19 6
When the Rayleigh number is weak, as being lower or equal to

Journal of Applied Mechanics
103, the heat transfer is essentially conductive, so the isotherms in
Fig. 5 have the same form as the walls. Nevertheless, there is a
movement of the fluid: the particles, which warm up on the wall
of the internal elliptic cylinder, tend to rise along this one, then to
go down again along the wall of the external elliptic cylinder.
Thus the flow is organized in two principal cells which turn very
slowly in opposite directions. The laminar convection is weak.

When the Rayleigh number increases to 5.104 and 105, Figs. 6
and 7 show that the streamline values increase appreciably, which
indicates an increase of convection, the flow of the fluid becomes
multicellular. Both in the left side and in the right side of the
annular space, a secondary flow is done in opposite direction of
the principal cell.

It seems to us that the geometry of the two walls is at the origin
of the formation of secondary flow, which appears in the case of
symmetry, by increasing the number of Rayleigh, the two second-
ary cells turn between two horizontal planes in the top region of
the annular space, and the two principal cells turn between two
vertical planes both in the left side and in the right side of this last.

The variation �T* between the isotherms of Figs. 5–8 is equal
to 0.1 and the values of the streamlines are given on these figures.

For Ra=5.105, the flow which is going up on the side of the hot
wall and going down on the side of the cold wall becomes intense
and the natural convection is dominant. The streamline values
show an appreciable increase in the flow. This means that the
convection becomes more important and predominates on the
conduction.

The transfer is done primarily by convection. We notice that by
increasing the value of the Rayleigh number, the flow of the fluid
becomes again bicellular and the isotherms become deformed and
inserted at the top where the convection is strong. Figure 8 illus-
trates it well. An increase in the Rayleigh number, that is to say an
intensification of the natural convection, can draw fusion of vor-
texes, according to the geometry of walls and the viscosity of the
fluid. This phenomenon of vortexes destruction is opposite of an-
other, creation of vortexes. This is observed in large values of
Rayleigh numbers and is bound to the instability of the flow when
it is preturbulent. To study them numerically, it is necessary to
arrange calculation codes for an unsteady flow in a tri-
dimensional space. This situation constitutes a priori a limit to the
utilization of elaborate calculation codes on a steady flow in a
two-dimensional space.

o the number of nodes for e1=0.688, e2=0.4, and �=0 deg

mber of nodes

0 81�56 91�60 101�70 130�60 135�65 140�70

1.07 1.08 1.08 1.09 1.10 1.10
1.78 1.82 1.84 1.85 1.85 1.86
2.70 2.72 2.74 2.76 2.76 2.76
6.21 6.24 6.24 6.25 6.25 6.26

Fig. 4 Streamlines and isotherms for Ra=104, �=0 deg, and
g t

Nu

�5

.05

.67

.65

.22
e0=0.4
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Figure 9 shows that the average Nusselt number values on the
internal and the external walls increase with the increasing of the
Rayleigh number.

4.4 Influence of the Inclination Angle. Figures 5–8 and 10
correspond to �=0 deg and Fig. 12 corresponds to �=90 deg. The
vertical fictitious plane passing by system center is a plane of
symmetry. The streamlines and the isotherms are symmetrical
compared to the vertical plane. On the left side of this plan, the
flow turns in the trigonometrical direction. On the right side, the
flow is in the opposite direction �the particles of the fluid move
upwards, under the action of gravity forces, along the internal hot

Table 4 Comparison of average Nus

e1 e2 Inclination Ra Re

0.688 0.4 �=90° 104

0.688 0.4 �=90° 105

0.86 0.4 �=90° 104

0.86 0.4 �=90° 4.104

Fig. 5 Isotherms and streamlines f

Fig. 6 Isotherms and streamlines
=0.6

Fig. 7 Isotherms and streamlines f

=0.6
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wall and go down near to the external cold wall�.
The variation of the inclination angle � has a considerable ef-

fect both on the fields of flow and temperature. We can already
notice that for Ra=104 the flow becomes again bicellular for �
=45 deg as Fig. 11 shows.

The comparison of Figs. 10 and 12 for �=0 deg and �=90 deg
with Fig. 11 for �=45 deg, shows that the angle of inclination �
modifies the flow: Initially there is the absence of plans of sym-
metry of the flows. We also notice that the inclination modifies the
flow intensity, �see Fig. 11�. The isotherms are also modified by
the inclination. The field of temperatures is asymmetrical for �

lt number „Ref. †7‡… with our results

Internal wall External wall

7� Our results Ref. �7� Our results

2.72 1.38 1.43
4.78 2.51 2.52
3.46 1.35 1.30
4.70 1.93 1.77

Ra=103, �=0°, e1=0.86, and e2=0.6

Ra=5.104, �=0°, e1=0.86, and e2

Ra=105, �=0 deg, e1=0.86, and e2
se

f. �

2.66
4.94
3.68
5.34
or
for
or
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different from zero as shown through the isotherms of Fig. 11.
Thus, the position and the value of the maximum temperature
depend on the inclination angle �.

Variation �T* between the isotherms of Figs. 10–12 is also
equal to 0.1 and the values of the streamlines are given in these
figures.

Figure 13 shows that for �=0 deg the maximum value of the
local Nusselt number on the internal wall is located at the angular
position �=90 deg, and the minimal values are located at the
angular positions �=30 deg and �=150 deg. On the external wall
the minimum value of the local Nusselt number is located at the
angular position �=90 deg, and the maximal values are located at
the angular positions �=30 deg and �=150 deg.

For �=45 deg the minimal value of the local Nusselt number
on the internal wall is located at the angular position �=45 deg,
and the maximum value is located at the angular position �
=225 deg �see Fig. 14�. On the external wall, the maximal value

Fig. 8 Isotherms and streamlines fo
=0.6

Fig. 9 Average Nusselt number on the internal and external
walls

Fig. 10 Isotherms and streamlines

=0.5

Journal of Applied Mechanics
of the local Nusselt number is located at the angular position �
=45 deg and the minimum value is located at the angular position
�=225 deg.

For �=90 deg the local Nusselt number on the internal wall
reaches its maximum at the angular position �=180 deg, and the
minimal value is located at the angular positions �=45 deg and
�=315 deg �see Fig. 15�. On the external wall, the local Nusselt
number reaches its maximum in the summit region located at the
angular positions �=45 deg and �=315 deg; the minimal value is
located at the angular position �=180 deg.

Figure 16 shows that the average Nusselt number values on the
internal and the external walls increase with the increasing of
inclination angle �.

Table 5 gathers the average Nusselt number values, on the in-
ternal and the external walls.

5 Conclusion
The suggested calculation code, which uses the method of finite

volumes, with the velocity-pressure formulation, makes it possible
to find with a good agreement, the literature results, which solve
problems similar to that studied. Thus we theoretically studied the
bidimensional thermal natural convection, in laminar flow and
permanent, in an annular space located between two confocal el-
liptic cylinders. We examined, in particular, the influence of the
slope’s angle � on the convective mode. Three values of � :�=0
deg, �=45 deg, and �=90 deg are considered. Simulations were
executed from four values of the Rayleigh number: Ra=103, Ra
=5.104, Ra=105, and Ra=5.105.

The results underline the influence of the inclination angle on
the average Nusselt number �Nui�. The maximum value is ob-
tained for �=90 deg when e1=0.688.

For low Rayleigh number values, the coefficient of heat transfer
is dominated by the mechanism of the conduction for the consid-
ered values of �.

a=5.105, �=0 deg, e1=0.86, and e2

Ra=105, �=0 deg, e1=0.688 and e2
r R
for
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Nomenclature
a � constant defined in the system of elliptic

coordinates=characteristic length �m�
ap ,aE ,aW ,aN ,as � coefficients of “Eq. �16�,” defined in Ref.

�12�
A1 � length of major axis in internal cylinder �m�
A2 � length of major axis in external cylinder

�m�
B1 � length of minor axis in internal cylinder

�m�
B2 � length of minor axis in external cylinder

�m�
cp � specific heat at constant pressure

�J kg−1 K−1�
e1 � eccentricity of internal ellipse,

e1=�A12−B12/A1
e2 � eccentricity of external ellipse,

e2=�A22−B22/A2

Fig. 11 Isotherms and streamlines for Ra=105, �=45 deg, e1
=0.688, and e2=0.5

Fig. 12 Isotherms and streamlines for Ra=105, �=90 deg, e1
=0.688, and e2=0.5

Fig. 13 Local Nusselt number on the internal and external

walls
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g � gravitational acceleration �m s−2�
Gr � Grashof number, Gr=g
a3 /	2�T

h � metric coefficient defined in Eq. �5�
Nu � local Nusselt number
Nu � average Nusselt number

P � pressure �Pa�
Pr � Prandtl number, Pr=	��cp /�
Ra � Rayleigh number, Ra=GrPr
S � Source term in “Eq. �16�”

T � fluid’s temperature �K�

Fig. 14 Local Nusselt number on the internal and external
walls

Fig. 15 Local Nusselt number on the internal and external
walls

Fig. 16 Average Nusselt number on the internal and external

walls
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T1 � temperature of the wall of elliptic internal
cylinder �K�

T2 � temperature of the wall of elliptic external
cylinder �K�

Td � temperature difference, Td=T−T2 �K�
�T � temperature difference between the inner

and the outer wall, �T=T1−T2 �K�
t � time �s�
u � velocity component according to coordinate

x �m s−1�
v � velocity component according to coordinate

y �m s−1�
V� � velocity component according to coordinate

� �m s−1�
V� � velocity component according to coordinate

� �m s−1�
V � velocity vector �m s−1�

x ,y ,z � Cartésien coordinates �m�

Greek letters
� � angle of inclination between OH and OX

“Fig. 1” measured positively in the counter-
clockwise direction �deg�


 � thermal expansion coefficient �K−1�
� � thermal conductivity �W m−1 K−1�
v � kinematic viscosity �m2 s−1�
� � density �kg m−3�
� � stress tensor

� ,� ,z � elliptic coordinates

Table 5 The average Nusselt number values, on the internal
and external walls

e1=0.688
and

Ra=104

� Nui Nue
0° 4.34 3.01

45° 4.45 3.05
90° 4.71 3.07

e1=0.86
and

�=0°

Ra Nui Nue

103 2.20 1.25
5.104 4.02 2.49
105 4.85 3.00

5.105 6.91 3.85
Journal of Applied Mechanics
� � stream function �m2 s−1�
� � general function

� � Diffusion coefficient

Exponents
* � dimensionless parameters

Indices
i and 1 � interior
e and 2 � exterior
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Numerical Investigation of the
Natural Convection Flows for
Low-Prandtl Fluids in Vertical
Parallel-Plates Channels
Laminar natural convection of metallic fluids �Pr�1� between vertical parallel plate
channels with isoflux heating is investigated numerically in this work. The full elliptic
Navier-Stokes and energy equations have been solved with the combination of the stream
function and vorticity method and the finite-volume technique. An enlarged computa-
tional domain is employed to take into account the flow and thermal diffusion effects.
Results are presented in terms of velocity and temperature profiles. The investigation also
focuses on the flow and thermal development inside the channel; the outcomes show that
fully developed flow is attained up to Ra=103, whereas the thermal fully developed
condition is attained up to Ra=104. Further, correlation equations for the dimensionless
induced flow rate, maximum dimensionless wall temperatures, and average Nusselt num-
bers as functions of the descriptive geometrical and thermal parameters covering the
collection of channel Grashof numbers 1.32�103�Gr/A�5.0�106 and aspect ratios
5�A�15. Comparison with experimental measurements has been presented to assess
the validity of the numerical computational procedure. �DOI: 10.1115/1.1991867�
Introduction
Laminar natural convection between parallel plates has been

extensively investigated throughout the years, due to its relevance
in a multitude of technological processes �1–4�. In fact, many
cooling/heating devices used in engineering applications can be
modeled as vertical parallel-plate channels; for example, solar col-
lectors, electronic equipment, channel nuclear reactors, and elec-
tric transformers. The investigation of natural convection for such
configurations has been mainly focused on two working fluids: air
and water �1–6�. The thermal and flow design procedures for
simple channel systems are well known, as reported in �7–12�.

Due to the renewed interest in nuclear reactor systems this con-
figuration can be of main importance in the design of nuclear
reactors safety; in addition, the low Prandtl fluids employed in the
thermal design of the core reactors show different behavior than
that of air and water.

The numerical studies on natural convection in vertical parallel-
plate channels were initiated by Bodoia and Osterle �13� who
invoked the boundary layer approach. The investigation was fo-
cused only on the channel domain. From a broad framework, it is
more suitable to take into account an upstream and downstream
regions to obtain more accurate results in terms of local quantities,
temperature and velocity, and global quantities, such as Nusselt
number and induced mass flow rate, in a large range of Rayleigh
numbers, as indicated in detail in �12,14�.

The category of liquid metals is of great engineering interest
due to their unique heat transfer capabilities. In nuclear power
plants in case of failure of the pump cooling system, the heat
transfer from the reactor core would be one of the natural convec-
tion with the liquid metal being the heat transfer medium. These

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received July 13, 2004; final manuscript
received April 20, 2005. Assoc. Editor: D. Siginer. Discussion on the paper should be
addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied Mechanics,
Department of Mechanical and Environmental Engineering, University of California
- Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four
months after final publication in the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
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fluids possess low or very low Prandtl numbers, with an order of
magnitude 10−2, and their thermal characteristics are more supe-
rior than air and water. These unique fluids present very strong
diffusive thermal effects which should be taken into account when
the numerical modeling is set up. For this reason, as remarked in
�12,14�, the boundary layer approach is not suitable and extended
computational domains need to be employed to generate accurate
numerical solutions.

A short review of publications dealing with the numerical in-
vestigation of vertical channels by employing the full elliptic con-
servation equations articulated with an extended computational
domain with both upstream and downstream reservoirs is pre-
sented in the forthcoming paragraphs.

Chang and Lin �15,16� solved numerically the elliptic-type gov-
erning equations with the primitive variable approach. They em-
ployed the SIMPLER method with the finite-difference technique
for solving the unsteady two-dimensional flow between symmetri-
cally �15� and asymmetrically �16� isothermally heated parallel
plates for air. The main interest of the authors was in the time
development of the flow and thermal structures inside the compu-
tational domain. For the symmetrically heated channel �15�, it was
found that the greater the Ra value the shorter the time necessary
to attain the steady-state condition. In addition, the authors re-
ported the flow and thermal structures of the whole computational
domain. In the paper on the asymmetric heating �16�, the authors
showed that an inflow from the upper side of the channel exists
and, moreover, that at Ra=106 the velocity and temperatures
showed oscillatory patterns above the heated plates. This investi-
gation elucidated the visualization of the thermal and the flow
fields above the heated channel. Ramanahtan and Kumar �17� car-
ried out an extensive parametric study for isoflux vertical parallel
plates that included the effects of the Prandtl number and the
channel aspect ratio. Also, correlation equations for the maximum
wall temperature and the average heat transfer rate were obtained.
The main parameters used in the investigation were the Prandtl
number, the Grashof number, and the channel Rayleigh number.
An adaptive grid solution was performed in �18�. The inflow
boundary conditions were imposed as an inviscid flow field gen-

erated by an assumed infinite line mass sink located at the center-
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line of the inlet plane, coupled with free entrainment boundaries
along the side. The downstream region outflow boundary corre-
sponded to an infinite line source plume solution in conjunction
with free entrainment boundaries along the sides. The results were
obtained with a fixed Prandtl number equal to 0.7, Grashof num-
bers ranging between 103 and 105, and a channel aspect ratio
equal to 1 or 2. An I-type shaped computational domain was em-
ployed, similar to that used in �15�. The vehicle for the numerical
computation was the finite volume method in terms of stream
function and vorticity approach for air. The relevant problem of
optimizing the plate distance was investigated in �19�. The main
findings were the dimensionless flow rate as a function of the
channel aspect ratio, in terms of the Grashof number based on the
channel height and the optimal aspect ratio that maximized the
heat transfer coefficient. A numerical investigation for a vertical
channel with uniform wall heat flux was reported in �20�, where
the effect of wall conduction on laminar natural convection be-
tween symmetrically heated vertical plates was studied. It was
found that the lower the thickness and/or the thermal conductivity
of the walls the more uniform the heat flux distribution on the
wall. The heat flux and temperature profiles along solid-fluid in-
terfaces for low Rayleigh numbers were significantly influenced
by the solid-fluid conductivity and the thickness wall-channel gap
ratios. A transient numerical analysis of natural convection in air
between two vertical parallel plates with the plates heated at uni-
form heat flux was addressed in �21�. The computational domain
was made up of the channel and two reservoirs, one placed down-
stream and the other upstream of the channel. The results were
presented in terms of wall temperature profiles, air velocity and
temperature profiles, and average Nusselt number changing with
time for different aspect ratio values and Rayleigh number values.
The simulation allowed the authors to detect the complex struc-
tures of the flow inside and outside the channel.

A numerical paper dealing with the effect of the Prandtl number
on natural convection channel flows was proposed in �22�. The
study centered on the elliptic governing equations in a single
channel with asymmetric heating conditions, for a wide range of
the modified Rayleigh numbers Ra*=Ra/A and channel aspect
ratios. A large spectrum of Prandtl numbers was investigated to-
gether with the role of the dimensions of the upstream reservoir
on the main thermal parameters. The main results were that for
low values of the modified Rayleigh number, the average Nusselt
number, due to the upstream conduction outside the channel, does
not follow the asymptotic trend corresponding to the fully devel-
oped regime unless the channel aspect ratio is small enough. A
numerical investigation on the effect of the Prandtl number on
natural convection in symmetrically heated isoflux vertical chan-
nels with or without coplanar adiabatic extensions downstream
was carried out in �23�. Results were obtained for three Pr=1.0
�10−2, 0.71, and 10, with A=10. The maximum wall temperature
attains an asymptotic value with respect to the adiabatic extension
length, which decreases for lower values of the Prandtl number. It
was also discovered that the increment of the chimney effect is
more pronounced for lower Pr.

A detailed experimental program was conducted to study the
heat transfer characteristics of mercury in natural convection in a
vertical channel in �24,25�. There seems to be a lack of numerical
studies on natural convection in isoflux heated vertical channels
with low Prandtl number fluids. This study has as practical appli-
cation the thermal control of nuclear reactors.

The aim of the present paper is to solve the full elliptic Navier-
Stokes and energy equations with the stream function and vortic-
ity method and the finite-volume technique. This paper deals with
the laminar, steady, two-dimensional �2D� regime natural convec-
tion between isoflux vertical parallel plates. An enlarged compu-
tational domain has been employed to take into account the flow
and thermal diffusion effects. Comparison with the experimental
results disclosed in �24,25� is presented to assess the validity of

the numerical procedure.

Journal of Applied Mechanics
Results are presented in terms of temperature and velocity pro-
files since it seems that very low attention was paid to the thermal
and flow fields of these fluids in natural convection. In addition,
global quantities such as the induced mass flow rate, the maxi-
mum wall temperatures, and the average Nusselt numbers as func-
tions of the intervening thermal and geometrical parameters are
presented to supply useful data to thermal designers.

Analysis and Numerical Solution Method
The physical system made of a vertical, parallel-plate channel

as depicted in Fig. 1�a�, is characterized by the height of the
heated plates L and the channel gap b. The channel aspect ratio
A=L /b is the only geometrical parameter arising in the present
analysis. The two plates are symmetrically heated with uniform
heat flux qw. As a result, buoyant fluid moves up through the
channel gap cooling the heated plates.

Under steady-state and laminar conditions and upon neglecting
the variability of thermophysical properties and adopting the
Boussinesq approximation, the two-dimensional conservation
equations, in terms of stream function � and vorticity � are

��u��
�x

+
��v��

�y
= ��2� − g�

�T

�y
�1�

�2�
2 +

�2�
2 = − � �2�

Fig. 1 „a… Sketch of the channel, „b… computational domain
�x �y

JANUARY 2006, Vol. 73 / 97



��uT�
�x

+
��vT�

�y
= a�2T �3�

In the preceding equations, the stream function is obtained by

��

�y
= u;

��

�x
= − v

and the vorticity is

� =
�v
�x

−
�u

�y

respectively.
Following arguments raised in �19,26�, an enlarged computa-

tional domain of finite extension, as illustrated in Fig. 1�b�, has
been employed in this investigation to mimic the free-stream con-
ditions of the fluid flow far away from the region of thermal
disturbance induced by the heated plates and to capture the diffu-
sive effects of the low-Prandtl fluids.

The set of imposed boundary conditions is the same as those in
�19,26�, and is excluded here for sake of brevity.

The choice of the following dimensionless variables:

X =
x

b
, Y =

y

b
, U =

ub

�
, V =

�b

�
, P =

�p − p	�b2


�2 ,

�4�

� =
�

�
, � =

�b2

�
,  =

k�T − T	�
qwb

gives way to the dimensionless groups

Gr =
g�qwb4

k�2 , Pr =
�

a
, Ra = Gr Pr �5�

Further, the channel aspect ratio A and the Rayleigh number Ra
are embedded into a dimensionless group Ra*=Ra/A, called the
channel Rayleigh number.

An essential quantity to be evaluated is the induced flow rate
between the parallel plates whose dimensionless form is

Table 1 Comparison for the average Nusselt number for dif-
ferent grid spacing with Ra=104 and A=10

Node numbers 11�31 21�61 41�121 Asympt

Nu 2.156 2.180 2.182 2.191
�% −1.60% −0.50% −0.40% 0.0

Fig. 2 Local Nusselt number as function of the X coordinate at
4
Ra=10 and A=10 for several meshes
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�w2 − �w1 = �� =�
0

1

U dY �6�

The key dimensional heat transfer quantity is the local convec-
tive coefficient h�x�. The wall heat flux has been imposed in this
investigation �boundary condition of second kind�, so the convec-
tive coefficient is related to the wall temperature through the re-
lation

h�x� =
qw

Tw�x� − T	

Since the local Nusselt number is

Nu�x� =
h�x�b

k
�7�

it can be written in terms of dimensionless wall temperature, by
means of Eq. �4�, as

Nu�X� =
1

w�X�
�8�

Thereafter, the average Nusselt number along a single channel
wall Nu is defined by

Nu =
1

A�0

A
dX

w�X�
�9�

In addition, some other quantities will be employed in the pre-
sentation of the results, such as the normalized velocity

U*�X,Y� =
U�X,Y�
Umax�X�

�10�

where Umax�X� is the maximum velocity value at each X section
and the modified Nusselt number, which employs the bulk tem-
perature

Nu*�X� =
1

w�X� − b�X�
�11�

with b�X� being the bulk temperature. With reference to �27� the
bulk �or mean� temperature in a channel is defined as

Tb =
1


cpUmS � �
S


cpuTdS �12�

Um being the average velocity inside the channel and considering
a fluid with constant thermophysical properties after rearranging
this equation it reads in dimensionless form

b�X� =

�
0

1

U�X,Y��X,Y�dY

�
0

1

U�X,Y�dY

�13�

The numerical computations have been carried out by means of
the control volume method. The vorticity and energy equations
Eqs. �1� and �3� have been solved by implementing the alternating
direction implicit �ADI� method with the false transient proce-
dure, as explained in �28�. The second-order upwind scheme, rec-
ommended by �29,30� has been employed to discretize the con-
vective derivatives, while a classical three-point central scheme
has been adopted for the diffusive derivatives. The convective
terms have been linearized following the iterative procedure sug-

gested by �28�. The second-order upwind used for the convection
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terms, both in the vorticity and energy equations, has been dem-
onstrated by �30� that dramatically reduces the numerical diffu-
sion typical of the first-order upwind schemes.

As vividly described by Patankar �31�, the problem of numeri-
cal diffusion, also called false diffusion, caused by the first-order
upwind scheme is never so serious at low Peclet numbers,
whereas it can be of importance when the Peclet number in-
creases.

The successive line overrelaxation method �SLOR�, with an
optimum relaxation factor of about 1.75, has been used to solve
the stream function equation. Once the equations of vorticity,
stream function, and energy have been solved, then the conver-
gence criteria for the timelike step have to be checked. The
steady-statelike condition was considered attained when the per-
cent variation of �, �, and  was less than 10−5.

The computational procedure was implemented by guessing an
initial value for the stream functions �w2 at the right wall 2, and
�w1=0, at the left wall 1. The selected value of the mass flow rate
is next verified on a global basis by integrating the momentum
equation along the centerline of the vertical, parallel-plate channel

Fig. 3 Local Nusselt number distribution as function of the X
channel X=0; „b… zoom of the exit section of the channel X=A
in the enlarged computational domain, as recommended by �19�.

Journal of Applied Mechanics
Validation of the Code. The analysis of validation of the code
has been carried out by employing the Richardson extrapolation
�32�. The verification of the numerical solutions is obtained by
considering several different meshes, successively halving the
coarser mesh size.

Indicating the coarse mesh solution at one location of the do-
main by f1 and the fine mesh solution at the same location by f2,
the asymptotic value of the function fasympt is given by the Rich-
ardson extrapolation relation

fasympt �
4

3
f2 −

1

3
f1

as the grid spacing tends to zero, �X, �Y →0, and by halving the
grid size.

All the results presented herein refer to fluids with a Prandtl
number equal to 0.02. The average Nusselt number is reported in
Table 1 as a function of the grid size at Ra=104 and an aspect
ratio A=10; the percent deviations between the grid values and the
asymptotic one are displayed in the same table. As it can be ob-

ordinate for several grids: „a… zoom of the inlet section of the
co
served, the main average heat transfer quantity of interest is very
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weakly affected by the grid nodes. In fact, even with the coarsest
mesh, nY �nX=11�31, the difference with the asymptotic value
is lower than 2%.

To investigate the effects of the grid distribution on the the local
Nusselt number, Fig. 2 displays this quantity as a function of the
X coordinate along the channel walls for different number of grid
nodes and the same previous configuration. It can be observed
minor differences attained at the channel inlet. In order to visual-
ize the discrepancies at the channel inlet X=0 and channel exit
X=A for different grid results, Fig. 3 displays the zoomed local
Nusselt number at the two aforementioned sections. It can be
observed at the channel inlet X=0.0 in Fig. 3�a� a strong discrep-
ancy of the local Nusselt number between the coarsest and the
finest mesh grids. The difference is about 58% when the 11�31
mesh solution is compared to the 61�141 solution. This differ-
ence reduces to about 35% by comparing the 21�61 grid with the
61�141 grid. Anyway, in any case it can be observed that from
X=0.2 downstream the four profiles show negligible differences.

Fig. 4 Velocity profiles as a function of Y for different node
numbers at three X stations: „a… X=0.0; „b… X=A /2; „c… X=A
In addition, the 21�61 grid results perfectly overlap to the finer
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mesh ones from X about 0.05. This is even more true at the chan-
nel exit, as observed in Fig. 3�b� where the same profiles are
displayed. No discrepancies can be observed, except at the chan-
nel exit where the maximum discrepancy between the value of the
coarsest and the finest grids is about 6%.

The accuracy of the code has been evaluated also by comparing
the velocity and temperature profiles inside the channel, which are
displayed in Figs 4 and 5 for different node numbers at Ra=104

and the same aspect ratio of A=10. The profiles are presented as a
function of the transversal coordinate Y at three different stations,
X=0, X=A /2, and X=A. The four grid sizes that have been em-
ployed for the comparison are nY �nX=11�31, 21�61, 41
�121, and 61�141. Velocity profiles are displayed in Fig. 4 and
it can be observed that at the channel inlet X=0 in Fig. 4�a� the
greatest discrepancies take place. In detail, large deviations can be
seen by comparing the grids 11�31 and 21�61. In fact, the
percent differences at the centerline between the two velocity pro-
files are about 5%, whereas the two finer meshes show a discrep-
ancy less than 2%. This behavior is due to the momentum diffu-
sion downward which is not correctly described with the coarsest
mesh 11�31. At the channel exit X=A in Fig. 4�b� the velocity
profiles show very small changes, not greater than 1% between
the coarsest and finest meshes employed.

As far as the temperature profiles are concerned, Fig. 5, the
largest deviations are observed at the channel inlet, in Fig. 5�a�,
with percent variations of about 120% between the coarsest and
finest meshes employed, which turns into a smaller difference in
terms of the local Nusselt number, about 50% as already seen. In
contrast, Fig. 5�b�, inside the channel at X=A /2, reveals that the
discrepancies are quite negligible. Finally, at the channel exit, X
=A it is seen in Fig. 5�c� that the differences are slightly larger
than 10%.

The numerical diffusion is more relevant at the channel inlet,
which implies discrepancies between the profiles for different grid
meshes, because the incoming fluid has a velocity vector not par-
allel to the channel walls, and then to the grid coordinates. This
fact is enhanced at the channel inlet with a very coarse mesh, such
as the grid with 11�31, but minor effects are present with finer
meshes. At the channel exit the effect is dumped because the
velocity vector is nearly parallel to the grid coordinate X.

Then, the numerical experiments indicated that a grid consist-
ing of nX=71 and nY =21 nodes inside the channel furnished sat-
isfactory results as a compromise between the computational time
and the accuracy of the code, especially in terms of average quan-
tities for the thermal design, for an aspect ratio ranging between 5
and 15. These grid distributions guaranteed a global energy bal-
ance inside the channel with an accuracy of about 0.5%. Both the
local and global mass conservation have also been checked and
differences of order 10−4 between the inflow and outflow mass
flow rates were found.

Results and Discussion
All the results presented in the next are for fluids with Prandtl

numbers equal to 0.02. The wall temperatures as a function of the
X coordinate are plotted in Fig. 6 for two different channel aspect
ratios A=10 and 15 and several Rayleigh numbers. Both families
of curves show increasing values with X and when A=10, Fig.
6�a�, the increment is linear starting from about X=0.5. A similar
trend is observed for A=15, Fig. 6�b�, with the beginning of the
linear increment at about X=1.4, and the sections close to the
channel exit, about X=14.7, which show a decrease of the wall
temperatures because of the diffusive effects. The percent discrep-
ancy ratio between the maximum temperature values for the A
=10 case is about 70% by comparing the case with Ra=104 and
106. A similar discrepancy is obtained for the A=15 case.

For an intermediate value of Ra=104, Fig. 7 depicts the wall
temperatures along the normalized abscissa X /A for the three in-

vestigated channel aspect ratios, 5, 10, and 15. It is confirmed that
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the wall temperature values increase with A, whereas the incre-
ment of the maximum wall temperature decreases with increasing
A value. It can be observed that the channel aspect ratio A can be
changed, for example, by fixing b and changing L. In this case the
dimensionless temperatures increase with A less than linearly. By
doubling L, for the same b and Gr values, the heat rate released to

Fig. 5 Temperature profiles as a function of Y for different n
the fluid is doubled. But this does not indicate a subsequent dou-

Journal of Applied Mechanics
bling of the dimensionless wall temperatures w,max, in fact the
increment is only of order 24%. When the height of the channel is
three times, i.e., A=15, the percent increment is about 43%. This
behavior is motivated by the fact that the increase of the channel
height L changes the flow from developing one to a fully devel-
oped one.

numbers at three X stations: „a… X=0.0; „b… X=A /2; „c… X=A
ode
Figure 8 displays the normalized velocity profiles for a channel
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ral Ra numbers: „a… aspect ratio A=10; „b… aspect ratio A=15
aspect ratio equal to 10 influenced by different Ra numbers as
function of the Y coordinate at the channel inlet X=0 in Fig. 8�a�
and at the exit X=A Fig. 8�b�. At the channel inlet, Fig.8�a�, the
velocity profiles retain the same shape, wherein the maximum
values are as follows: 650 at Ra=103, 1578 at Ra=104, 3562 at
Ra=105, and 7550 at Ra=106. The similar patterns are due to the
low momentum diffusion downward which do not alter signifi-
cantly the incoming velocity profile before entering the channel.
Conversely, at the channel exit in Fig. 8�b�, the velocity patterns
are totally dissimilar, because the Ra number plays an important
role in the development of the flow and the growth of the bound-
ary layer. In fact, the higher the Ra number the thinner the bound-
ary layer thickness is close to the heated walls. This pattern can be
seen in terms of velocity profiles which show a parabolic profile
for the case at Ra=103 and two symmetrical peaks close to the
wall at Ra=106. In terms of ratio between the minimum and maxi-
mum velocity values the outcome is 0.55 at Ra=106, 0.88 at Ra
=105, and 0.99 at Ra=104.

The normalized temperatures as a function of Y are reported in
Fig. 9 at the channel inlet and exit for the same configurations as
before in Fig. 8. The higher the Ra value the less developed the

Fig. 6 Wall temperature profiles as a function of X for seve
temperature profile is at the channel inlet, X=0 in Fig. 9�a�. In

102 / Vol. 73, JANUARY 2006
Fig. 7 Wall temperature profiles as a function of the normal-
ized abscissa X /A for Ra=104 and several channel aspect ra-

tios A
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10
fact, at Ra=103 the thermal disturbance reached the centerline of
the channel Y =0.5 and the temperature turns out to be about 18%
of the wall value. This value descends to 5% when Ra=104. At
Ra=106 the fluid temperature of the core zone is the same as the
ambient temperature when 0.4�Y �0.6. At the channel exit, X
=A in Fig. 9�b�, the fluid temperature on the centerline is as low,
with respect to the wall value, as the Ra value is higher. In fact, at
Ra=103 the ratio is about 0.92 and at Ra=106 about 0.23.

The velocity profiles, normalized to the maximum velocity, at
Ra=104 and different channel aspect ratio, A=5, 10, 15 are dis-
played in Fig. 10. It can be seen that the dependence of the shape
of the profile both at the channel inlet X=0 and exit X=A on the
channel aspect ratio is very weak and the velocity profiles are
pluglike shaped. The maximum values both at the channel inlet
and exit are not located on the centerline. The Y location at which
the maxima are attained occur at about Y =0.2 and 0.8 at the
channel inlet, and tend to the centerline at the channel exit.

The temperature profiles, normalized to the maximum wall
value, reported in Fig. 11, are for the same configuration as be-
fore. At the channel inlet the temperature profiles are very alike
and they present a very small discrepancy on the centerline Y
=0.5. At the channel exit X=A the greater the A value the higher
the normalized temperatures. Anyway, the values are in the 0.66-
0.75 range for the investigated A.

In order to investigate the flow and thermal development inside
the channel, the axial derivative of the dimensionless normalized
velocity and the modified local Nusselt number, Eqs. �10� and �11�

*

Fig. 8 Normalized velocity profiles as a function of Y for A=
are reported. The axial derivatives of the normalized velocity U
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at the symmetry line of the channel Y =0.5 for an aspect ratio A
=10 as a function of the axial coordinate X are displayed in Fig.
12. By neglecting the sections close to the inlet and exit, the fully
developed flow is attained for Ra=103; in fact, when X�3.0 the
derivative is equal to 0.0. For Ra=104 the derivative attains values
close but not equal to zero. On the contrary, higher Ra values
display values of the axial derivative different from zero, indicat-
ing a still developing flow, since the length of the channel does
not permit the flow to fully develop. The modified local Nusselt
numbers Nu*�X� shows that when Ra=103 the fully thermally
developed flow is attained for X coordinate values similiar to
those of the flow development. This behavior is not observed for
Ra=104 and 105, since the flow attains the thermal developed
condition farther downstream than Ra=103. When the value of Ra
is equal to 106 this condition is never attained inside the channel.

The temperature fields at Ra=103 and Ra=106 are displayed in
Fig. 14. When Ra=103, Fig. 14�a�, the isolines show a parabolic-
wise shape inside the channel displaying a behavior typical of
thermally fully developed flows. The thermal field at the channel
exit shows that the maximum wall temperature is located inside
the channel. In addition, the fluid exiting the channel makes a
single thermal plume. When Ra=106, Fig. 14�b�, the isolines of
the temperature display a different behavior. In fact, the isolines
are packed to the walls, indicating a stronger temperature gradi-
ents in the transversal direction and the flow develops farther

and several Ra numbers: „a… channel inlet; „b… channel exit
downstream than the previous configuration. Also, the boundary
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A=
layer thickness is thinner than the previous configuration. In ad-
dition, the thermal plumes created by the fluid exiting the channel
are two distinct.

The �� values, which corresponds to the dimensionless flow
rate, has been correlated to the Grashof number and the channel
aspect ratio A by the least-squares method. The correlation equa-
tion obtained is

�� = 3.78�Gr�0.352�A�0.585 �14�

with a regression coefficient r2=0.998 in the 1.98�103�Gr
�5.0�107 and 5�A�15 ranges.

Monomial correlation equations for the maximum wall tem-
perature and average Nusselt number in terms of the channel
Grashof Grb /L are proposed. The first equation is for the maxi-
mum wall temperature

w,max = 19.95�Gr

A
�−0.280

�15�

with an r2=0.987 in the 1.32�103�Gr/A�5.0�106 range.
In Fig. 15 the maximum wall temperatures w,max are displayed

in terms of the Gr/A together with the correlation Eq. �15� and a
very good agreement is observed. The largest deviations are at-
tained at small and large Gr/A values.

The monomial correlation equation for the average Nusselt

Fig. 9 Normalized temperature profiles as a function of Y for
number is
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Nu = 0.197�Gr

A
�0.215

�16�

with r2=0.983 in the same Gr/A range as before.
The comparison between the correlation equation Eq. �16� and

the data obtained by the numerical simulation is reported in Fig.
16. To assess the validity of the numerical computations, the ex-
perimental measurements by �25� are also included for compari-
son. The agreement between the numerical and experimental re-
sults is excellent. Subtle mismatch occur at the lowest and highest
Gr/A values utilized.

Conclusions
A numerical investigation of natural convection between isoflux

heated plates for a fluid with the Prandtl number equal to 0.02 has
been carried out in the present paper. After having checked the
convergence of the numerical procedure, results have been pre-
sented as functions of the Rayleigh number in the range
103−106 and the channel aspect ratio A=5, 10, and 15. Results in
terms of velocity and temperature distribution as a function of the
channel spacing and of wall temperatures show that the higher the
Ra number the lower the flow development, with velocity distri-
butions which display large peaks �Ra=106� close to the heated
plates. The results showed that the thermal diffusion plays an
important role up to Ra=103 where the temperatures at the chan-

10 and several Ra numbers: „a… channel inlet; „b… channel exit
nel exit along the channel gap present a nearly uniform distribu-
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tion with a difference between the minimum and maximum values
smaller than 5%, whereas at Ra=106 the difference is about 80%.

The results also displayed that the flow is fully developed up to
Ra=103 for the investigated channel aspect ratio A=10, whereas
the thermal fully developed condition is attained inside the chan-
nel up to Ra=104 since the fluid presents a very high thermal
diffusion compared to the momentum diffusion.

The temperature fields confirmed the findings of the tempera-
ture and velocity profiles. In addition, correlation equations for the
induced flow rate, maximum wall temperatures, and average Nus-
selt numbers are presented as functions of the main thermal Gr or
Ra numbers and geometrical A parameters. The present numerical
data have been compared to experimental one �25� in terms of the
average Nusselt number and the agreement has been excellent.
The proposed correlation equations for the average Nusselt num-
ber, the dimensionless flow rate, and the maximum wall tempera-
tures are monomial and valid in the whole range of the thermal
and geometrical parameters, i.e., modified or channel Grashof
numbers 1.32�103�Gr/A�5.0�106 and aspect ratios 5�A
�15.
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Nomenclature
a � thermal diffusivity, m2/s
A � channel aspect ratio, L/b
b � plate spacing, m
f � dummy function value
g � gravitational acceleration, m/s2

Gr � Grashof number, Eq. �5�
h�x� � local convective coefficient, W/m2K

k � thermal conductivity, W/mK
L � plate height, m

Nu�x�, Nu�X� � local Nusselt number, Eqs. �7� and �8�
Nu � average Nusselt number, Eq. �9�

Nu* � modified Nusselt number, Eq. �11�
p � pressure, Pa
P � dimensionless pressure, Eq. �4�

Pr � Prandtl number, Eq. �5�
qw � wall heat flux, W/m2

r2 � correlation coefficient
Ra � Rayleigh number, Eq. �5�

Ra* � channel Rayleigh number, Ra/A
S � surface area, m2

T � temperature, K
u, v � velocity components along x,y, m/s

U, V � dimensionless velocities, Eq. �4�
U* � modified dimensionless velocity, Eq. �10�

x, y � Cartesian coordinates, m

04 and several channel aspect ratio A: „a… channel inlet; „b…
=1
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axial coordinate X for different Ra values
X, Y � dimensionless coordinates, Eq. �4�

Greek Symbols
� � volumetric coefficient of expansion, 1 /K
 � dimensionless temperature, Eq. �4�
� � kinematic viscosity, m2/s
� � stream function, m2/s
� � dimensionless stream function, Eq. �4�
� � vorticity, 1 /s
� � dimensionless vorticity, Eq. �4�

Subscripts
1 � coarse mesh solution
2 � fine mesh solution

Fig. 11 Normalized temperature profiles as a function of Y at
Ra=104 and several channel aspect ratio A: „a… channel inlet,
„b… channel exit

Fig. 12 Axial derivative of the normalized velocity U* at the

centerline, Y=0.5, as a function of X
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Fig. 13 Local modified Nusselt numbers as a function of the
Fig. 14 Temperature isolines with A=10: „a… Ra=103, „b… Ra
6
=10
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asympt � asymptotic value
b � bulk

max � maximum value
w � wall
	 � free stream condition
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Mass Transfer From a Rotating
Disk to a Bingham Fluid
In the present investigation, an analytical numerical solution is presented for the mass
transfer from a rotating disk to a Bingham fluid for the case of laminar boundary layer
flow. The analytical approach includes the coupled effects of steady disk rotation and
non-Newtonian fluid properties on the mass transfer rate. A dimensionless expression for
the wall mass transfer rate based on the Sherwood number, Sh, is obtained in terms of the
system parameters (Reynolds number, Rep, and Schmidt number, Scp) which depend on
the dimensionless yield stress or Bingham number, By. The analytical relation indicates
that an increase in By (up to the limit By �1) leads to a slight increase in the wall mass
transfer rate, and thereafter, for By �1, the mass transfer rate is reduced.
�DOI: 10.1115/1.2065607�
1 Introduction

The rotating disk is a popular geometry for studying different
fluids, both because of its simplicity and the fact that it represents
a classical fluid dynamics problem. A review of mass transfer
from rotating disks to Newtonian fluids can be found in Levich
�1�. This flow paradigm has also been used to investigate the
momentum �2,3� and heat transfer �4� characteristics of non-
Newtonian fluids, while relatively less work has been done in
relation to mass transfer. Hansford and Litt �5� reported theoretical
and experimental studies of mass transfer from a rotating disk for
a solute diffusing through power-law fluids. Mishra and Singh �6�
extended the work of Hansford and Litt �5� and also compared
their results to mass transfer from a flat plate with a non-
Newtonian fluid. Greif and Paterson �7� obtained a more accurate
prediction for mass transfer from a rotating disk in a power-law
fluid by including convective transport in the radial direction. Ka-
wase and Ulbrecht �4� have used power-law velocity profiles in
heat and mass transfer analysis for non-Newtonian fluids sur-
rounding rotating bodies and within tubes.

In the previous investigations noted above, the fluid of interest
was restricted to either shear thinning or shear thickening fluids
�power-law fluids�. To the authors’ knowledge, no study has yet
considered mass transfer for a disk rotating in a Bingham fluid,
even though many industrial applications involve slurries or sus-
pensions which exhibit yield stresses. Bingham fluids, unlike
Newtonian fluids, can transmit a shear stress in the absence of a
velocity gradient. The special flow behavior of a Bingham fluid
will also influence the overall mass transfer rates.

The purpose of this study is to present an analytical solution for
mass transfer in steady laminar flow of a Bingham fluid over a
rotating disk. In this work we extend our previous numerical study
�2� of the velocity field to examine the coupled effects of steady
disk rotation and a Bingham fluid rheology on the mass transfer
rates. Application of the present analysis is limited to flows where
the shear stress exceeds the yield stress in the region adjacent to
the disk surface. Typically the shear stresses have appreciable val-
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until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.

108 / Vol. 73, JANUARY 2006 Copyright © 2
ues in this region. We first review the concentration profile for a
Newtonian fluid, before proceeding to extend the analysis to the
case of a Bingham fluid.

2 Theoretical Formulation

2.1 Analysis for Newtonian Fluids. We consider laminar
flow of a disk rotating in an infinite Newtonian fluid with mass
transfer occurring between the surface of the disk and the fluid.
The disk rotates about the z axis at a constant angular velocity �,
and the origin is located where the axis of rotation intersects the
disk. Let vr, v�, and vz represent the physical components of the
velocity vector in cylindrical coordinates, and � and v be the
density and kinematic viscosity, respectively. The relevant flow
Reynolds number becomes, Re=�r2 /v. It is also assumed that the
flow is steady and rotationally symmetric, so that �� � /�t
=�� � /��=0 for all dependent variables. The flow field is fully
described by the continuity and Navier–Stokes equations. These
are given in many standard fluids texts and will not be repeated
here. The transport of a species in a flowing liquid is governed by
convective and diffusion. For laminar flow, the steady state con-
vection diffusion equation in cylindrical coordinates takes the fol-
lowing form:

vr
�c

�r
+

v�

r

�c

��
+ vz

�c

�z
= D� �2c

�r2 +
1

r

�c

�r
+

1

r2

�2c

��2 +
�2c

�z2� �1�

where D is the diffusivity and c is the concentration field of the
diffusing species. The relevant boundary conditions are given by

c = c0 at z = 0

c → c� at z → � �2�

Following von Karman �see Ref. �2��, a similarity variable � �di-
mensionless normal distance from the disk� is introduced, along
with the following dimensionless representations for the radial,
tangential and axial velocity components:

� = z��

v
�1/2

�3a�

F��� =
vr

�r
�3b�

G��� =
v� �3c�

�r
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H��� =
vz

��v�1/2 �3d�

In addition, a dimensionless concentration may be defined by

���� =
�c − c��
�c0 − c��

�4�

The approach above assumes that the functions F, G, and H de-
pend only on z and do not depend on r; in particular the flow
towards the disk, vz, is a function of z only and is independent of
r. Throughout the fluid the concentration, c, is equal to the bulk
value except for a thin layer �the diffusion layer� near the disk.
Within the momentum boundary layer, the radial and tangential
velocity components are both nonzero, while outside of this re-
gion purely axial motion exists. For boundary layer flow, the rate
of change of a scalar in the direction normal to the disk is much
greater than its rate of change in the radial direction. Thus, the
concentration may be approximated as a function of the normal
distance from the disk surface, i.e., c=c�z�, and not a function of
either r or � �4,5�. Accordingly, Eq. �1� reduces to the following
ordinary differential equation:

vz
dc

dz
= D

d2c

dz2 �5�

Introducing the transformations given by Eqs. �3� and �4� into the
diffusion Eq. �5�, we obtain

�� = ScH�� �6�

where the prime denotes differentiation with respect to � and Sc
=v /D is the Schmidt number of the fluid. From the definition of
� as given by Eq. �4�, the boundary conditions become

� = 1 at � = 0

� → 0 at � → � �7�

Following Hansford and Litt �5� we assume high Schmidt number
flow, and take H=−F��0��2, where F��0� is the dimensionless
radial velocity gradient at the surface of the disk. The physical
implication of this approximation is that the mass transfer occurs
in a narrow region next to the surface in which the radial velocity
profile can be approximated by a linear relation based on its gra-
dient at the surface. Using this result for H, the diffusion equation
becomes

�� = − ScF��0��2�� �8�

An exact solution of this mass transfer equation under steady state
conditions was given by Hansford and Litt �5� as

� = 1 −

	�1

3
,
F��0�Sc�3

3
�

	�1

3
� �9�

where 	�n� is the complete gamma function and 	�n ,a� is the
incomplete gamma function.

The convective mass transfer rate of species A from a rotating
disk to the surrounding fluid is given by

JA = Kc�c0 − c�� �10�

Kc is the convective mass transfer coefficient. Since the mass
transfer at the surface is entirely the result of molecular diffusion,
it can also be described by

JA = − D�dc

dz
�

z=0
�11�

Using the definition of the similarity variable, Eq. �3a�, and the

dimensionless concentration, Eq. �4�, Eq. �11� becomes

Journal of Applied Mechanics
JA = 0.776F��0�1/3�c0 − c���1/2D2/3v−1/6 �12�

Finally, the mass transfer coefficient can be determined by equat-
ing Eq. �12� and Eq. �10� to obtain

Kc = 0.776F��0�1/3�1/2D2/3v−1/6 �13�

The corresponding expression for the local Sherwood number
Sh=Kcr /D becomes

Sh = A Re1/2 Sc1/3 �14�

where the coefficient A is given by

A = 0.776F��0�1/3 �15�

From the Newtonian solution, F��0�=0.51 and Eq. �14� reduces to

Sh = 0.62 Re1/2 Sc1/3 �16�

2.2 Analysis for Non-Newtonian Fluids. Now consider the
laminar flow over a disk rotating in a non-Newtonian fluid of
infinite extent. The non-Newtonian fluid is assumed to be charac-
terized by the Bingham plastic model given by the following ex-
pression:

	
ij = � 
y


�̇

+ �p�eij = eij for 
 � 
y

eij = 0 for 
 � 
y
� �17�

where �p and 
y are the plastic viscosity and yield stress, respec-
tively, and eij is the rate-of-deformation tensor, defined in terms of
the velocity field ui by

eij =
�ui

�xj
+

�uj

�xi
�18�

The magnitudes of the shear stress and deformation rate are de-
fined, respectively, as




 =�1

2

ij
ij �19a�


�̇
 =�1

2
eijeij �19b�

using the summation convention for repeated indices. Equation
�17� implies that the rheological behavior of a Bingham fluid is
characterized by two different flow regimes: if 
�
y the material
behaves as a rigid solid, if 
�
y, the material flows with an ap-
parent viscosity .

As shown in Ref. �2�, assuming boundary layer flow and rota-
tional symmetry, the apparent viscosity, , will take the following
form:

 = ��p +

y

�� �vr

�z
�2

+ � �v�

�z
�2� �20�

For high Schmidt number convective mass transfer between a
Bingham plastic fluid and a rotating disk, the diffusion boundary
layer thickness, �m, is much smaller than the momentum boundary
layer thickness �. Our mass transfer solution will neglect any
unsheared region which might exist outside the boundary layer
region, and instead focus on the sheared region which flows with
apparent viscosity, . Calculations based on the numerical solu-
tion indicate that for practical rotation rates, the magnitude of the
shear stress always exceeds the yield stress in this region.

Rashaida et al. �2� gave the following form for the apparent

viscosity at the wall:
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 = �p�1 +
2By

�F��0�2 + G��0�2�1/2� �21�

where F��0� and G��0� are the gradient of the dimensionless ra-
dial and tangential velocity functions at the disk surface, respec-
tively, and By is a Bingham number defined as

By =

y

5��r�v��1/2 �22�

where v=�p /� is the kinematic viscosity of the plastic fluid. The
Bingham number is a measure of the ratio of the yield stress to the
viscous stress.

Following the approach of Mishra and Singh �6� for the case of
a power-law fluid, we can define a shear viscosity at the wall,
which is equivalent to the apparent viscosity evaluated at the wall.
The apparent viscosity is employed to redefine the Reynolds and
Schmidt numbers to take into account the shear dependence of the
apparent viscosity, i.e.

Rep =
��r2

�p�1 +
2By

�F��0�2 + G��0�2�1/2�
�23�

and

Scp =
�p

�D

�1 +
2By

�F��0�2 + G��0�2�1/2� �24�

The mass transfer for a rotating disk in a Bingham plastic fluid
will now be discussed based on the appropriate expressions for the
apparent viscosity and Reynolds and Schmidt numbers. The mass
transfer flux developed for a Newtonian fluid, Eq. �12�, can be
transformed to represent the mass transfer flux in a Bingham fluid
by substituting an appropriate function for the material property v.
Following the approach of Matsumoto et al. �8� for the case of a
film on a spinning disk, we substitute v=�p /� to obtain

JA =
0.776F��0�1/3�c0 − c��D2/3�1/2

��p/��1/6 �25�

The plastic viscosity, �p, and the diffusion coefficient, D, can
be expressed in terms of the dimensionless parameters Rep �Eq.
�23�� and Scp �Eq. �24��, respectively. After substituting Rep and
Scp into Eq. �25� and then proceeding with a similar analysis to
that adopted for the Newtonian case, we obtain the following
expression for the Sherwood number:

Sh =
JAr

D�c0 − c��
= A Rep

1/2Scp
1/3 �26�

where

A =
0.776F��0�1/3

� �F��0�2 + G��0�2

�F��0�2 + G��0�2 + 2By
�1/6

�27�

For the Reynolds and Schmidt number expressions adopted, we
obtain the same indices as those for a Newtonian fluid. Equation
�26� gives the mass transfer rate �in terms of Sherwood number�
as a function of Bingham number, including the specific case of
By =0 for a Newtonian fluid.

3 Results and Discussion
A dimensionless expression for the mass transfer from the sur-

face of a rotating disk has been derived in terms of the system
parameters. This expression relates the Sherwood number, Sh, to
the Reynolds number Rep, the Schmidt number Scp, and the Bing-
ham number By. The present result is expected to be valid as long
as the flow in the boundary layer is laminar and the yield stress is

exceeded.
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The effect of the dimensionless yield stress or Bingham number
on the mass transfer is shown in Fig. 1 in terms of the variation of
function A given by Eq. �27� with Bingham number, By. The value
of A has been calculated for a range of By values using the values
of F��0� and G��0� �the gradient of the two velocity components
at the wall� obtained by Rashaida et al. �2�. The Newtonian case
corresponds to By =0. Figure 1 indicates that increasing the yield
stress of the material increases the mass transfer rates for By �1;
beyond that, i.e., for By �1, the mass transfer begins to decrease.
Evidently, the wall mass transfer rate is affected by the complex
rheology of the Bingham fluid. However, the overall variation of
the coefficient A with By is very small: for the range of By con-
sidered, the variation is less than 2%.

4 Conclusions
An analytical model has been developed to represent the wall

mass transfer rate in a non-Newtonian Bingham plastic fluid. The
approximate analytical solution is evaluated using the numerical
results of Rashaida et al. �2� for the velocity field. It was deter-
mined that as the Bingham number increases from 0 to 1, the mass
transfer rate increases slightly. Thereafter, when the Bingham
number increases beyond 1, the mass transfer rate begins to
gradually decrease.

Nomenclature
A � defined by Eqs. �15� and �27�

By � Bingham number defined by Eq. �22�
c � concentration at any point in the fluid, kg/m3

c0 � concentration at surface, kg/m3

D � diffusivity coefficient, m2/s
F ,G ,H � dimensionless velocities in r, � and z direction

JA � mass flux of component A, kg/m2 s
kc � mass transfer coefficient, m/s
r � radial distance, m

Rep � Reynolds number based on apparent viscosity
defined by Eq. �23�

Sc � general Schmidt number
Scp � Schmidt number based on apparent viscosity

defined by Eq. �24�
Sh � Sherwood number defined by Eqs. �14� and

�26�
vr ,v� ,vz � radial, tangential and axial velocity, m/s

Fig. 1 Effect of Bingham flow behavior on local wall mass
transfer rate for a rotating disk
z � axial coordinate, m
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Greek symbols
� � thickness of momentum boundary layer, m

�m � thickness of diffusion boundary layer, m
� � dimensionless concentration defined by Eq. �4�
� � tangential coordinate
� � angular velocity, s−1

	�n� ,	�n ,x� � gamma and incomplete gamma function
v � kinematic viscosity, m2/s

�p � plastic viscosity, Pa s
 � apparent viscosity defined by Eq. �21�, Pa s
� � density of the fluid, kg/m3

� � dimensionless axial coordinate defined by Eq.
�3a�

Subscripts
p � plastic
r � radial
z � normal

� � angular
Journal of Applied Mechanics
0 � at surface
� � in bulk of solution
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Modeling of Dissolved Gas Effect
on Liquid Transients
Transient cavitation of a homogeneous gas-liquid mixture flow is modeled for an elastic
pipeline by using the classical conservation equations of each phase, which are, later on,
written in dimensionless form. The later is resolved by a second order finite difference
scheme for which a flux corrective transport algorithm is added as an additional step, in
order to accomplish a suitable treatment of the shock problem. The flow gives rise to a
localized vapor�gas cavity for which time and space expansion is calculated from the
corresponding compatibility relation, continuity equation and ideal gas law. Also, effect
of the degassing phenomenon, on this cavity and on the dynamic parameters, is repro-
duced from a macroscopic bubble growth model. Obtained results are discussed and
compared with ones given by experimental data. �DOI: 10.1115/1.1992513�
Introduction
In order to improve the reliability and the performance of hy-

draulic systems it is important to be able to predict the onset and
the degree of cavitation, during transient flows. Several authors
have considered some particular aspects of this phenomenon. Ber-
gant and Simpson �1� have presented a column separation study
with a retrospect of different cavity models, followed by a new
cavitating region model. Obtained results are in good agreement
with experiments. Knowing that a column separation can occur at
some points of the system, which leads to cavitiy formation, they
have explained in their bibliography three cavity models: the dis-
crete vapor cavity model posed by Streeter �2� and used by Wylie
and Streeter �3� and Bergant and Simpson �4�; the interface vapor
cavitation model established by Streeter a�5� and used by Bergant
and Simpson �6�; the discrete gas cavity model established by
Provoost and Wylie �7� and used by Barbero and Coaponi �8� and
Bergant and Simpson �4�. In these works, transient cavitation was
only considered, i.e., without disolved gas release. In the above
models the cavity, induced by the column separation, was calcu-
lated by the use of finite difference forms of cavity continuity
equation.

In his study on transient pipeline liquids flows, Lee �9� has
analyzed effects of air presence and dissolved gas on valves. Bas-
ing his investigation on different valve’s comportment �i.e., with
different characteristics� he has recommended a choice of valve
type.

Shu �10� has presented a new two-phase homogeneous equilib-
rium vaporous cavitation model which was compared with a con-
ventional column separation model. Some serious deficiencies of
the later have been avoided by expressing the compatibility equa-
tions in terms of pressure �p�, ratio between volume flux �Q� and
void fraction ��� and mean density time evolution. Good agree-
ment has been found in comparison with experimental data.

Rewriting the classical four equation set of equal velocities ho-
mogeneous model, in dimensionless form and all the flow param-
eters as function of pressure, Kessal and Amaouche �11�� have
introduced a new cavity modeling based on continuous medium
principle. This technique allows to avoid, in the calculation, the

1Author to whom Correspondence should be addressed.
Contributed by the Applied Mechanics Division of ASME for publication in the
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Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four
months after final publication in the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
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classical procedure of the cavity volume which consumes gener-
ally a lot of computational time, especially in the case of transient
cavitating flow in pipeline networks.

On the other hand, it is known that, if the pressure drops below
its saturated vapor pressure value, a degassing process is observed
which leads to gas bubble growth. During the column separation a
quantity of gas release will be added to the formed vapor in the
cavity. When the pressure increases, these bubbles are not dis-
solved again as rapidly as the water vapor turns back to liquid.
Some authors, among them Kranenburg �12�, Wiggert and Sun-
dquist �13� and Kessal and Amaouche �11�, have considered this
physical phenomenon and approximate models have been ob-
tained. These models, which are almost based on a correlation
giving the quantity of gas in a bubble, did not consider the time
radius bubble evolution and the parameters affecting the gaseous
diffusion. They did the phenomenon depending principally on gas
saturated and liquid pressures only. The first author, which has
explained and applied this correlation, has performed applications
on gaseous and vaporous cavitation with column separation by
considering the effect of a supposed number of bubble present in
the cavitating flow region. Time cavity volumes are drawn as
function of this number. Basing their model on this correlation,
Wiggert and Sundquist �13� have introduced, in place of bubble
number and others diffusion parameters, a constant with different
values depending on initial gas concentration. Considering the gas
release phenomena, Kessal and Amaouche �11� have obtained a
degassing coefficient which takes into account the fluids proper-
ties and the pipe characteristics. However, this model is based on
the Wiggert and Sundquist �13� model.

The aim of this paper is to present some applications of a math-
ematical model, describing a homogeneous transient two-phase
flow in a pipeline, taking into account the gas release phenomena
and the column separation. The former process, based on the con-
tinuity and diffusion equations across the bubble interface, allows
calculating the gas rate as function of mixture and bubble inter-
face physical characteristics. The later, which can be conceived as
a local phenomenon, is modeled by a new calculation technique
based on the corresponding compatibility equation, the continuity
equation of the cavity and the gas ideal law. Therefore, the effect
of all the flow parameters is considered. Emphasis is also placed
on numerical methods adopted and applied to column separation
occurring near an instantaneous valve closed.

Theoretical Modeling
Our model considers a homogeneous one-dimensional approach

of the liquid-vapor�gas mixture flow, in which the vapor pressure
and gas temperature in the cavities can be assumed to be constant.

In this model, the two components are treated as a mixture having
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cross sectional duct average flow parameters. So, considering the
formulation of Kessal and Amaouche �11�, the mass and momen-
tum equations of each component are written in the following
conservative form:

���

�t
+

�

�x
���V� = 0 �1�

�

�t
���V� +

�

�x
���V2 + P�� = − ��g sin � − 2Cf

��

Dh
�V�V �2�

where

P� =
p − po

�o
�1 −

�p − po�Do

2eE
�−1

�3a�

or

P� =
�P� − 1�Pr o

1 − �P� − 1�Dre
�3b�

where

�� =
�1 + Eo��P� − 1��P�

�o + �1P� �4�

In the previous equations the fluid and pipe physical characteris-
tics are grouped in the following suitable form:

�o =
�o

Gr
�1 − Eo� −

�vo

��o
	

�1 =
�o

Gr
�Eo� −

�go

��o
	 +

�o

��o

Eo� = Eo� +
Do

e
Eos

�5�

Eos =
po − pv

E

Eo� = K�
−1�p − pv�

Gr = exp�−

0

t
�g

�g��
Gr is a degassing coefficient and �g the gas release mass rate per
unit volume of the mixture �Appendix A�.

P� is the equilibrium equation of the bubble in which the dy-
namics effects are neglected

P� =

p − pv +
2	

R

po − pv +
2	

Ro

�6a�

or

P� =
pg

pgo
=

�g

�go
�6b�

The void fraction � can be expressed as function of P* �or pres-
sure p� as

� =
��o„1 + Eo��P� − 1�…

��o„1 + Eo��P� − 1�… − �vo − �goP� +
�o

�o
P�Gr

�7�

In order to calculate the pressure p in all points of the pipeline
from equation set �1� and �2�, where the unknown are �� and V,
P� must be expressed in function of ��. Then from Eq. �4�, ex-

� � �
pression P = P �� � constitutes a second order equation
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aP�2 + bP� + c = 0

Solving for P�, yields

P� =
�1�� − �1 − Eo�� + ���1 − Eo�� − �1���2 + 4�o��Eo�

2Eo�

�8�
For a practical application, the resolution of the system �1� and

�2� requires the definition of the boundary conditions. In our case,
the example considered concerns a flow in a relatively short pipe-
line with a valve and a tank at upstream and downstream bound-
ary. The calculation of the unknowns, at these points, requires the
transformation of the previous system into differential equations
corresponding to each boundary. The characteristics method al-
lows to accomplish this transformation �Courant and Hilbert �14��.

Numerical Resolution

Method of Characteristics. The characteristics method, which
is based on the propagation celerity of the pressure wave, is ap-
plied to obtain ordinary differential equations. In fact, it is not a
numerical method but an analytical solution method. However,
the necessary integration is generally performed numerically. Fol-
lowing the techniques described by Courant and Hilbert �14� the
characteristic roots of �1� and �2� system are:


1,2 = V ± a �9�

The parameter a is the wave propagation speed in the mixture. It
can be expressed in the following form:

a = � 1

d��

dP�


1/2

�10�

where

d��

dP�
=

d��

dP�
dP�

dP�

Using Eqs. �3b� and �4�, the relation �10� becomes

a =
A1

1 −
Do

2e
Eos�P� − 1�

� E

�o
Eos

�A2 + P�Eo��A1 − �1A2P�

�11�

The associated compatibility relations

�P�

�t
± ��a

�V

�t
= � ���ag sin � −

2Cf

Dh
��a�V�V� �12�

are valid along the characteristics directions

dx

dt
= V ± a �13�

The differential operator in Eqs. �12� takes the following form:

�

�t
=

�

�t
+ �V ± a�

�

�x

This equation relates to the propagation of the pressure wave trav-
eling along characteristic lines in the x, t plan defined by Eq. �13�
�Fig. 1�.

It is assumed that initial and boundary conditions are known
and at t time the dependent variables are given at nodes R and S
of Fig. 2. The two compatibility relations, given by Eqs. �12�, are
integrated along the characteristics RP and SP from time t to t

+t as
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R,S

P

�P� ±

R,S

P

��a�V = �

R,S

P ���ag sin � −
2Cf

Dh
��a�V�V��t

�14�
A specified time grid characteristic is now established in order

to accomplish an orderly computer solution. The pipe length L is
initially discretized into N equal reaches, x=L /N �Fig. 2�. Flow
conditions are known along the pipe at initial time �given by ini-
tial steady state conditions�. Equations �12� are applied for the
downstream and the upstream boundaries, respectively. They are
also used in Appendix B for the cavity volume calculation. How-
ever, spatially interpolations are necessary at location S and R
near the previous boundaries, respectively.

Finite Difference Conservative Method. The set of conserva-
tion Eqs. �1� and �2� can be rewritten as

�F1

�t
+

�F2

�x
= 0 �15�

�F2

�t
+

�F3

�x
= F4 �16�

This system can be solved by the two-step finite difference S�
�

scheme.
This predictor-corrector scheme corresponds to an explicit form

Fig. 1 The characteristic lines in the x , t plan
Fig. 2 Linear interpolation on �t constant grid
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of the predictor variables in �i+�� at time level �n+��. Following
the technique described by Lerat and Peret �15��, the two-step
finite difference S�

� scheme, used for any grid point �i ,k+1�, is as
follows, for the predictor:

�F̄1�i
n+1 = �1 − ���F1�i

n + ��F1�i+1
n − ����F2�i+1

n − �F2�i
n�

�F̄2�i
n+1 = �1 − ���F2�i

n + ��F2�i+1
n − ����F3�i+1

n

− �F3�i
n� + �t�F4�i

n

The corrector step is defined as to obtain overall second order
accuracy and can be written as

�F1�i
n+1 = �F1�i

n −
�

2�
��� − ���F2�i+1

n + �2� − 1��F2�i
n

+ �1 − � − ���F2�i−1
n + �F̄2�i

n − �F̄2�i−1
n �

�F2�i
n+1 = �F2�i

n −
�

2�
��� − ���F3�i+1

n + �2� − 1��F3�i
n

+ �1 − � − ���F3�i−1
n + �F̄3�i

n − �F3�i−1
n � + t�F4�i

n

in which �= �t /x� is calculated in order to satisfy the following
stability criteria:

t

x
�

1

Max��V� + a�
�17�

This criteria is also valid for the boundary conditions calculation.
As can be noticed, the S�

� scheme is a three-point accurate
method �Fig. 3�. For values of �=1 and �=0 we obtain the
predictor-corrector Mac Cormack’s scheme �used in this study�
which is generally employed in some problems of gas dynamics.
The values �=1/2 and �=1/2 correspond to Lax Wendroff
scheme.

Considering that the liquid transient flow with gas release phe-
nomenon is not only a hydrodynamic problem but also a phase
change problem, the previous scheme, which was generally ap-
plied to compressible fluid flow, can be used for our problem.
Then in order to accomplish a suitable treatment of the shock
problem considered herein �instantaneous valve closure�, a flux
corrective transport �FCT� algorithm is added to the above scheme
as additional steps �Fletcher �16��.

As it was reported by this author, high-order Godunov schemes
�for example� produce more accurate solution than FCT algo-
rithms, but more sophistically coding and less economical regard-
ing the computational time. However, FCT algorithm, which is

Fig. 3 Finite differences scheme
more accurate than artificial viscosity, gives largely acceptable
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results for our problem.
During the numerical applications, the above finite difference

scheme gives the values of �� and V. Then a direct method is
employed to carry out, from Eqs. �6a� and �8� �in which 	=0� and
�7� and �6b� with �A7�, the unknowns p, � and �g. The boundary
conditions are calculated from the compatibility relations �12�
with spatial interpolations near these boundaries.

Calculation Procedure. In the calculation the unknowns at the
boundaries are the pressure p at the valve and the velocity V at the
tank. At the valve point, for which V=Cte �or V=0 for the up-
stream valve closure of the duct�, the ratio P� can be deduced
from Eq. �3b� as follows:

P� =
P�

P�Dre + Pr o
+ 1 �18�

Knowing the pressure p=Cte �i.e., P�=Cte and P�=Cte� at the
tank, an integration of the corresponding compatibility relation
allows obtaining the velocity V.

For the interior points of the mesh grid used by the numerical
procedure, the finite difference scheme gives the parameter ��

from which P� can be deduced �Eq. �8��. The velocity V is ob-
tained directly by ratio F2/F1.

Then from the relation �6a�, in which 	=0, the pressure p for
these cases is

p = pv + P��p − pvo
� �19�

As can be noticed, the parameters �� and P� are dependent on
the gas release rate. This phenomenon can be expressed by the
degassing coefficient Gr which depends on the pipe and fluids
properties. This global formulation allows verifying the impact of
these properties on this coefficient.

Besides, a numerical calculation procedure, including these re-
lations, is summarized in Appendix C.

Results

Hypothesis. In addition to habitual assumptions made for
single component flow, the following hypothesises should be also
stated:

–the steady-state Darcy–Weisbagh formula is used to express
the pipe wall shear stress �Wylie and Streeter �2��.

–the initial dissolved gas amount is supposed to be small and
uniformly distributed gas bubbles in the liquid.

–the initial void fraction is very small.
–the initial velocity and pressures are calculated from steady-

state flow.
–the gas behavior is isothermal.
–the valve closure is instantaneous.
Wiggert and Sundquist �13� have conducted a series of tests,

with three initial dissolved gas concentration in water, by consid-
ering a pipe loop 295 m in length and 0.0254 m in diameter. Ex-

Table 1 Experimental conditions

Valve
localization

Initial
velocity Gas

Gas
contenta

�Co�

Reservoir
pressure

�KN/M2�

Fluid
temperature

�°C�

Upstream 0.77 Air 0.02 172b 16
Upstream 0.77 CO2

0.60 170b 16
Upstream 0.77 CO2

1.15 175b 16
Downstream 0.77 Air 0.02 297c 18
Downstream 0.77 CO2

0.60 305c 18
Downstream 0.77 CO2

1.15 308c 18

aRatio by volume standard conditions.
bDownstream reservoir �Fig. 4�a��.
cUpstream reservoir �Fig. 4�b��.
perimental conditions are reported in Table 1. For our model, the
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numerical calculation is performed by dividing this pipeline into
N=40 sections. The previous finite difference technique is applied
for interior points of the grid �Fig. 3� and the characteristics Eqs.
�14� for the boundaries �Fig. 2�. For N�40 it is noticed to be
more time consuming for same results accuracy.

Valve Closure at the Upstream Boundary. Considering ex-
perimental and numerical results corresponding to Fig. 4�a� �Wig-
gert and Sundquist �13��, the pressure responses at point x=0 are
produced in Figs. 5�a�–5�c�, followed by the associated cavity
volume near the valve �Fig. 6�. This volume is calculated by the
method presented in Appendix B. As can be observed, the effect
of degassing on cavity closure is noticeable and increases linearly
with the time. Pressure peaks are dumped by the subsequent gas
release phenomenon. The dumping level depends strongly on ini-
tial gas content Co.

Valve Closure at the Downstream Boundary. Figures
7�a�–7�c�, which correspond to valve closure at x=L, show similar
results corresponding to Fig. 4�b�. As can be observed in these
figures, the effect of degassing is less pronounced, contrary to the
previous case. However, time duration of the cavity �Fig. 8� is
shorter and consequently followed by smaller gas release amount.

A comparison between results relative to Figs. 4�a� and 4�b�
shows that upstream valve position has a more pronounced effect
on pressure transients than the later. Also, in some plants, the
presence of dissolved gas in liquid has some utility, especially in
the case of column separation, which is generally followed by a
high pressure pulse. In fact, the dissolved gas plays a damping
role during this phenomenon. If we consider only a vapor cavity
volume �i.e., without gas release� the resulting pressure pulse will
be so high that it can be dangerous for the wall pipeline integrity.

The cavity volume calculation for these two practical cases
�Figs. 6 and 8� is presented in the Appendix B. It is obtained by
combining the corresponding compatibility relation, the cavity
continuity equation and the ideal gas law.

Some uncertainties have been noticed in the numerical calcula-
tion, especially near the valve closure region where the fluid me-
dium makes the wave speed highly variable. It is also known that
the finite difference schema utilizing a fixed grid induce numerical
dispersion and attenuation. In the other hand, the characteristics
method is less expansive than the Mac Cormack scheme which
requires small steps in time because of stability. Nevertheless, the

Fig. 4 „a… Experimental pipe system with upstream valve clo-
sure, „b… experimental pipe system with downstream valve
closure
later is more accurate.
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Conclusion

A numerical simulation of a gaseous and vaporous cavitation
has been performed by introducing a more complete gas release
calculation method and a new cavity model for the column sepa-
ration. The former, which takes into account the physical charac-
teristics of the bubble and the fluid medium, considers the time
volume bubble evolution. Cavity volume formation, during tran-
sients in a homogeneous gas-liquid mixture flow, is modeled and
numerically simulated by taking into account the effect of degas-
sing phenomenon. It has been observed that the gas diffusion into
the bubbles and the cavity lead to a depressing of the dynamic
parameters and a decrease of time cavity duration. Also, the intro-
duced new model of gas mass rate permits to consider the degas-
sing problem under its physical aspect and its effect on the flow

Fig. 5 „a… Pressure response at point x=0, for Co=0.02, „b…
pressure response at point x=0, for Co=0.59, „c… pressure re-
sponse at point x=0, for Co=1.15
parameters.
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Nomenclature
a � wave propagation speed, m/s
C � dissolved gas concentration, moles/moles

Cf � friction coefficient
Dh � hydraulic diameter of the pipe, m
E � Young’s modulus of elasticity for pipe mate-

rial, N/m2

e � pipe wall thickness, m
Gr � gas release coefficient

g � gravitational acceleration, m/s2

L � pipe length, m
p � average cross-sectional pressure, N/m2

pv � vapor pressure, N/m2

R � bubble radius, m
S � pipe cross-sectional area, m2

T � absolute temperature, K
t � time, s

V � average cross-sectional velocity, m/s
Wc � volume of vapor cavity, m3

x � axial distance along the pipe, m

Greek Symbols
� � average cross-sectional void fraction
� � gas diffusion coefficient, m2/s2

�g � rate of gas release per unit volume of the fluid,
Kg/s /m3

� � mean density of the mixture, kg/m3

	 � interfacial tension, N/m
� � boundary shear stress, N/m2

� � angle of pipe inclination, deg

Subscripts
c � cavity
f � flux or friction
g � gas
� � liquid

Fig. 6 Time cavity volume expansion at point x=0, for Co
=0.02, 0.6 and 1.15
o � reference conditions
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s � saturation
v � vapor
w � interface

Appendix A: Gas Mass Rate Calculation „�g…

The mass transfer near the bubble interface can be given by the
following form of Fick’s law:

mf =
��m

1 − cW
� �c

�r
�

r=R

�A1�

where mf is the interfacial mass flux across the gas-liquid inter-
face �Fig. 9�, � the diffusion coefficient, c the dissolved weight
fraction of gas as defined by Henry’s law and cw the solute con-
centration at the bubble interface.

Also, considering the governing continuity equation for c in the

Fig. 7 „a… Pressure response at point x=L, for Co=0.02, „b…
pressure response at point x=L, for Co=0.59, „c… pressure re-
sponse at point x=L, for Co=1.27
spherical coordinates yields

Journal of Applied Mechanics
�
�c

�t
+ �v

�c

�r
= �

�

r2

�

�r
�r2�c

�r
� for r � R�t� �A2�

where � is the mixture density.
Resolving this equation by an integral method, Kwak and Kim

�16� have given a solution for bubble radius R and bubble inter-
face thickness �. For a constant value of interface tension, the
form of this solution is

1

10
� �

R
�3

+
1

2
� �

R
�2

+ � �

R
� =

1 − c�

c� − cw
A �A3�

where

A =
1

�R3���� +
2	

RgTR
�R3 − ��� +

2	

RgTRo
�Ro

3	
�� is the fluid density far from the gas-liquid interface.

Reformulating equation �A1�, by replacing the radial gradient
of c as function of a concentration profile, the previous authors
have obtained

mf =
2��

�
� c� − cw

1 − cw
� �A4�

C� and Cw are the gas concentrations in the liquid �far from the
bubble� and near the bubble interface, respectively.

Considering ��R and replacing � from equation �A3�, yields

� = AR
1 − c�

c� − cw
�A5�

Therefore Eq. �A1� becomes

mf =
2��2R2

���� +
2	

RgTR
�R3 − ��� +

2	

RgTRo
�Ro

3	
�c� − cw�2

�1 − cw��1 − c��

�A6�

Fig. 8 Time cavity volume expansion at point x=L, for Co
=0.02, 0.56 and 1.27
Fig. 9 Bubble growth in gas saturated fluid
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It must be noticed that gas diffusion calculation requires cw
�c� These concentrations are obtained from experiments �Kwak
and Kim �16��.

Writing the mass balance across the bubble interface �Fig. 1 as
mf4�R2, the gas release rate �g becomes

�g =
8���2R4

���� +
2	

RgTR
�R3 − ��� +

2	

RgTRo
�Ro

3	
1

Sdx

�c� − cw�2

�1 − cw��1 − c��

�A7�

The density � depends on the pressure p, as expressed in Equa-
tion �4� from which

� = ���o
So

S
�A8�

where: So /S= �1− �Do /2e�Eos�P*−1��2 �Kessal �17��
The bubble radius R is deduced from the relation �6a�.

Appendix B: Cavity Volume Modeling
Numerical vapor+gas cavity modeling can be illustrated in a

simple manner as shown by Fig. 10, where Vc1 and Vc2 are the
velocities of cavity boundaries.

Our case corresponds to an upstream pipeline valve closing, as
shown in Fig. 4�a�.

Then integration of one of Eqs. �12�, which corresponds to the
negative characteristics direction �13�, yields

PC2� − Pm� = ���a�m�VC2 − Vm� + ���a�m�g sin � +
Cf

Dh
V�V��dt

�B1�
Also neglecting wall expansion, the relation �3a� becomes

PC2� �
p − po

�o
�B2�

which leads to

pc2 = �oPc2� + po �B3�
On the other hand, considering the equilibrium equation of a

bubble �6a� where the surface tension is neglected, equation of
state in the cavity takes the following form:

pgVol = �PC2 − PV�Vol = mRT = RT

0

t

�gdt �B4�

Then from �B3� and �B4�:

PC2� =
RT

�oVol
0

t

�gdt −
p − po

�o
�B5�

Considering time cavity expansion, with a volume Vol, Kranen-

Fig. 10 Cavity position in mesh grid x , t
burg �12� has introduced the simple following relation:
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dVol

dt
= S�VC2 − VC1� �B6�

Replacing VC2 and PC2� in �B1� by �B5� and �B6� yields, after
simplifications

RT

�oVol

t

t+dt

�gdt −
po − pv

�o
− Pm

= ��a�1

S

dV

dt
+ Vc1 − Vcm + �g sin � +

Cf

Dh
V�V��dt� �B7�

Rearranging in order to calculate time cavity volume expansion
yields

dVol

dt
=

A1

Vol
− A2 �B8�

where

A1 =
SRT

��a�o



t

t+dt

�gdt

A2 =
S

��a
� po − pV

�o
+ Pm� � − S�VC1 − Vcm + C1dt�

After some combinations and rearranging for suitable calcula-
tions, the time cavity expansion becomes

Vol�t + t� = Vol�t� + �B1�̄g − A2�dt �B9�
where

B1 =
SRT

��a�o

C1 = g sin � +
Cf

Dh
V�V�

and

�̄g =
1

Vol�t�

t

t+dt

�gdt

is the relative mass rate of released gas.
It can be noticed that Vol�t+t� depends on the phases’ physi-

cal parameters, pipe wall deformation and �g.

Appendix C: Computer Program Chart for the Case of
a Valve Closure at Upstream Boundary (Figs. 5(a)–5(c))

Step 1: Calculate initial steady-state conditions for the param-
eters p, V and �*.

Step 2: Increment the time t=x /Vo+a
Step 3: Upstream boundary condition corresponding to the

negative characteristics direction �Fig. 2�.
3.1: Calculate the parameters am, VS, PS� and �S

*, at point S of
Fig. 2, by linear interpolation �Hartree method� by using the nega-
tive characteristics direction for Eq. �14�.

3.2: Calculate P��1� �for V�1�=0� from the one of the compat-
ibility relation �14� corresponding to the negative direction.

3.3: Calculate P*�1� from the relation �3b�.
3.4: Calculate �*�1� from the relation �4�.
3.5: Calculate p�1� from the relation �19�.
3.6: Calculate ��1� from the relation �7�.
3.7: Calculate the cavity volume Vol�t+t� from the relation

�B9� �Appendix B� by the use the compatibility relation �B1�. In
our case the velocities VC1 and VC2 �Fig. 10� are determined from
the velocities V�1� and V�2� by linear interpolation. This proce-
dure is repeated for the case a column separation at an interior

point position.
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Step 4: Downstream boundary condition corresponding to the
mesh grid �n+1�.

4.1: Calculate P��1� from the relation �8�.
4.2: Calculate the parameters VR, PR� and �R

* , at point R of Fig.
2, by linear interpolation �Hartree method� by using the positive
characteristics direction.

4.3: Calculate V�n+1� �for p�n+1�=const� from the one of the
compatibility relation �12� corresponding to the positive direction.

Step 5: Calculate, by the use of the previous predictor-corrector
scheme, the parameters �*�i� and V�i� at the interior points of the
mesh grid �Fig. 3�.

Step 6: Application of the FCT procedure, as performed by
Fletcher �16�.
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Numerical Determination
of Moment Lyapunov Exponents
of Two-Dimensional Systems
The pth moment Lyapunov exponent of an n-dimensional linear stochastic system is the
principal eigenvalue of a second-order partial differential eigenvalue problem, which can
be established using the theory of stochastic dynamical system. An analytical-numerical
approach for the determination of the pth moment Lyapunov exponents, for all values of
p, is presented. The approach is illustrated through a two-dimensional system under
bounded noise or real noise parametric excitation. Series expansions of the eigenfunc-
tions using orthogonal functions are employed to transform the partial differential eigen-
value problems to linear algebraic eigenvalue problems, which are then solved numeri-
cally. The numerical values obtained are compared with approximate analytical results
with weak noise amplitudes. �DOI: 10.1115/1.2041663�
1 Introduction
In general, the study of the dynamic stability of many engineer-

ing structures under random loadings leads to a linear stochastic
dynamic system of the form

ẋ�t� = A„��t�…x�t�, x�0� = x0, �1�

where ��t�= ��1�t� ,�2�t� , . . . ,�d�t��T is a vector of stochastic pro-
cesses of dimension d characterizing the randomness of the load-
ings. The sample or almost-sure stability of the trivial solution of
system �1� is determined by the Lyapunov exponent, which char-
acterizes the average exponential rate of growth of the solutions of
system �1� for t large, defined as

�x�t� = lim
t→�

1

t
log�x�t�� , �2�

where �x�t�� denotes the Euclidean vector norm. The trivial solu-
tion of system �1� is stable with probability one �w.p.1� if the
largest Lyapunov exponent is negative, whereas it is unstable
w.p.1 if the largest Lyapunov exponent is positive. The theory of
Lyapunov exponents was placed on a rigorous mathematical foun-
dation in the Multiplicative Ergodic Theorem �1�. The Lyapunov
exponent has been recognized as an ideal avenue for studying the
behavior of a dynamical system, because it provides not only the
information about stability or instability, but also how rapidly the
response grows or diminishes with time. There are many publica-
tions on the analytical and numerical determination of the
Lyapunov exponents of stochastic dynamical systems.

On the other hand, the stability of the pth moment of the trivial
solution of system �1� is determined by the moment Lyapunov
exponent

�x�t��p� = lim
x→�

1

t
log E��x�t��p� , �3�

where E��x�t��p� denotes expected value. If the moment Lyapunov
exponent is negative, then the pth moment approaches 0 as time
t→�. The pth moment Lyapunov exponent is a convex analytic
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function in p, which passes through the origin and its slope at the
origin is equal to the largest Lyapunov exponent. The non-trivial
zero of the moment Lyapunov exponent is called the stability
index.

In order to have a complete picture of the dynamic stability of
system �1�, it is important to study both the sample and moment
stability and to determine both the largest Lyapunov exponent and
the pth moment Lyapunov exponent.

Although the moment Lyapunov exponents are important in the
study of dynamic stability of stochastic systems, the actual evalu-
ations of the moment Lyapunov exponents are very difficult. Vari-
ous approximate analytical methods have been devised to actually
carry out the computation for a number of engineering structural
systems with noise excitations of small amplitudes.

Arnold et al. �2� obtained weak noise expansions of the moment
Lyapunov exponents of a two-dimensional system in terms of �p,
where � is a small parameter, under both white noise and real
noise excitations. Khasminskii and Moshchuk �3� obtained an
asymptotic expansion of the moment Lyapunov exponent of a
two-dimensional system under white noise parametric excitation
in terms of the small fluctuation parameter. Sri Namachchivaya
and Vedula �4� obtained a general asymptotic approximation for
the moment Lyapunov exponent and the Lyapunov exponent for a
four-dimensional system with one critical mode and another as-
ymptotically stable mode driven by a small intensity stochastic
process. Sri Namachchivaya and Van Roessel �5� studied the mo-
ment Lyapunov exponents of two coupled oscillators driven by
real noise. Xie obtained weak noise expansions of the moment
Lyapunov exponent, the Lyapunov exponent, and the stability in-
dex, in terms of the small fluctuation parameter, of a two-
dimensional system under real noise excitation �6� and under
bounded noise excitation �7�. Milstein �8� studied the Taylor series
expansion of the moment Lyapunov exponent ��p� in p using the
asymptotic behavior of semi-invariants for linear stochastic sys-
tems.

The Lyapunov exponents of a general n-dimensional stochastic
system can be determined numerically using the algorithm devel-
oped in Ref. �9�. However, there are no numerical algorithms for
evaluating the moment Lyapunov exponents. Because of this rea-
son, almost all published work has been on the analytical deter-
mination of the moment Lyapunov exponents under weak noise
excitations. Xie �10� evaluated numerically the moment Lyapunov
exponents of a near-nilpotent system under stochastic parametric

excitation. The second-order ordinary differential eigenvalue
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problem governing the moment Lyapunov exponent is converted
to a two-point boundary-value problem, which is solved numeri-
cally by the method of relaxation.

Numerical determination of the moment Lyapunov exponents is
important for three reasons. Numerically accurate results of the
moment Lyapunov exponents are essential in assessing the valid-
ity and the ranges of applicability of the approximate analytical
results. In many engineering applications, the amplitudes of noise
excitations are not small and the approximate analytical methods,
such as the method of perturbation and stochastic averaging, can-
not be applied. Numerical approaches have to be employed to
evaluate the moment Lyapunov exponents. Furthermore, for sys-
tems under noise excitations that cannot be described in analytical
forms, such as filtered white noise or bounded noise, or if only the
time series of the response of the system is known, Monte Carlo
simulation approaches have to be resorted to.

This paper presents the first study of numerical determination
of the pth moment Lyapunov exponents for all values of p. The
formulation of the second-order partial differential eigenvalue
problem for the pth moment Lyapunov exponent of a general
n-dimensional linear stochastic system is presented in Sec. 2.
Analytical-numerical approach for determining the pth moment
Lyapunov exponent is illustrated for two-dimensional systems un-
der the parametric excitations of nonwhite noise processes, i.e.,
the bounded noise and the real noise processes. The second-order
partial differential eigenvalue problems are established in Sec. 3.
Double series expansions of the eigenfunctions, in terms of or-
thogonal functions, are used to convert the partial differential ei-
genvalue problems to linear algebraic eigenvalue problems in Sec.
4. Numerical results of the moment Lyapunov exponents are pre-
sented in Sec. 5.

2 Eigenvalue Problems for the Moment Lyapunov Ex-
ponents

Suppose Eq. �1� can be rewritten as an n-dimensional system of
linear Stratonovich stochastic differential equations

d*x = a * xdt + �
�=1

d

��xdW�, �4a�

where x= �x1 ,x2 , . . . ,xn�T and the superscript � indicates that the
stochastic system is understood in the sense of Stratonovich, or
the equivalent Itô equations

dx = axdt + �
�=1

d

��xdW�, a = a� +
1

2�
�=1

d

����2, �4b�

in which W1�t� ,W2�t� , . . . ,Wd�t� are d mutually independent stan-
dard Wiener processes.

Applying the Khasminskii transformation �11�

s =
x

�x�
, �x� = 	xTx, �s� = 1, �5�

which generates a Markov diffusion process on the unit hyper-
sphere Sn in the n-dimensional vector space. The Stratonovich
differential equations governing s�t� are given by

d*s = h0
*�s�dt + �

�=1

d

h��s�dW�, �6a�

or the equivalent Itô differential equations

ds = h0�s�dt + �
�=1

d

h��s�dW�, �6b�
where
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h0j�s� = h0j
* �s� +

1

2�
k=1

n

�
�=1

d
�hj�

�sk
hk�,

and

h0�s� = a�s − q0s, q0 = sTa�s ,
�7�

h��s� = ��s − q�s, q� = sT��s, for � = 1,2, . . . ,d .

The infinitesimal generator of the Markov diffusion process s�t�
on the projected space Pn, which is obtained by identifying s and
−s, is ��12,13��

A = h0
T �

�s
+

1

2�
�=1

d 
h�
T �

�s
�2

= �
j=1

n

h0j
�

�sj
+

1

2�
j=1

n

�
�=1

d 
h�j
�

�sj
�2

= �
j=1

n

h0j
�

�sj
+

1

2�
j=1

n

�
�=1

d 
h�j
�h�j

�sj

�

�sj
+ h�j

2 �2

�sj
2� . �8�

To avoid degeneracy, the following ellipticity condition is im-
posed:

dim LA�h j, j = 0,1, . . . ,d��s� = n − 1, for all s in Pn,

where LA�z� denotes the Lie algebra generated by the vector
fields z. Adopting the following notations

B = �
�=1

d

q�
h�
T �

�s
� = �

�=1

d

q�
�
j=1

n

h�j
�

�sj
� ,

D = q0 + �
�=1

d

r�, r� = 1
2sT��� + ����T���s − q�

2, �9�

R = �
�=1

d

q�
2,

then the pth moment Lyapunov exponent ��p� is the principal
eigenvalue of the differential eigenvalue problem

L�p�T�p� = ��p�T�p� , �10�

in which the operator L�p� is given by

L�p� = A + p�B + D� + 1
2 p2R . �11�

As an alternative approach, suppose that in system �1� the sto-
chastic process ��t� is strongly elliptic, which ensures that the
transition probability densities of ���t� ,s�t�� are smooth in all vari-
ables, and the Khasminskii transformation �5� is applied, then the
operator L�p� in Eq. �10� is given by

L�p� = G + hT �

�s
+ pq��,s� = G + �

j=1

n

hj
�

�sj
+ pq��,s� , �12�

where G is the generator of process ��t� and

h��,s� = �A��� − q��,s�I�s, q��,s� = sTA���s . �13�

For the special case when ��t� is a stationary ergodic diffusion
process described by the Stratonovich stochastic differential equa-
tion

d*��t� = X0„��t�…dt + �
�=1

d

X����t��dW��t� , �14�

the generator G of ��t� is given by

G = X0
�

��
+

1

2�
�=1

d 
X�

�

��
�2

= X0
�

��
+

1

2�
�=1

d 
X�

�X�

��

�

��
+ X�

2 �2

��2� .
�15�
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Hence, the pth moment Lyapunov exponent ��p�, for all real
values of p, of a general n-dimensional linear stochastic system is
the principal eigenvalue of a second-order partial differential ei-
genvalue problem �10� with L�p� given by Eqs. �11� and �12�.

In the remainder of this paper, two-dimensional systems under
parametric excitation of non-white noises are considered to illus-
trate the analytical-numerical approach for the determination of
the pth moment Lyapunov exponent.

3 Eigenvalue Problems for �„p… of Two-Dimensional
Systems

Consider a single degree-of-freedom system under random
noise parametric excitation

d2q���
d�2 + 2�

dq���
d�

+ �	0
2 − �0
����q��� = 0, �16�

where � is the time variable, q��� the generalized coordinate, � the
damping constant, 	0 the circular natural frequency of the system,
and �0 the amplitude of the random fluctuation. An example of
system �16� is the transverse vibration of a column under dynamic
axial load. In this paper, the random noise 
��� is considered as a
bounded noise or a real noise process.

3.1 Bounded Noise and Real Noise. A bounded noise pro-
cess is given by


��� = cos��0� + �0W��� + �� , �17�

in which � is a uniformly distributed random number in �0,2�,
and W��� is the standard Wiener process in time �. The inclusion
of the phase angle � in Eq. �17� makes the bounded noise 
��� a
stationary process. The correlation function of 
��� is given by

E�
��1�
��2�� = R��1 − �2� =
1

2
cos �0��1 − �2�exp
−

�0
2

2
��1 − �2��

and the spectral density function of 
��� is

S�	� =
−�

+�

R���ei	�d� =

�0
2
	2 + �0

2 +
1

4
�0

4�
2��	 − �0�2 +

1

4
�0

4���	 + �0�2 +
1

4
�0

4� .

It may be noted that the mean-square value of the bounded noise
process 
��� is fixed at E�
2����= 1

2 . The spectral density function
can be made to approximate the well-known Dryden and von
Karman spectra of wind turbulence by suitable choice of the pa-
rameters �0, �0, and �0. In the limit as �0 approaches infinite, the
bounded noise becomes a white noise of constant spectral density.
However, since the mean-square value is fixed at 1

2 , this constant
spectral density level reduces to zero in the limit. On the other
hand, in the limit as �0 approaches zero, the bounded noise be-
comes a deterministic sinusoidal function.

The bounded noise process �17� was first employed by Stra-
tonovich �14� and has since been applied in many engineering
applications, see, e.g., Refs. �15,16�.

A real noise process modeled by an Ornstein–Uhlenbeck pro-
cess is given by

d
��� = − �0
���d� + �0dW��� . �18�

The Ornstein–Uhlenbeck process is a simple, Gaussian, explicitly
representable stationary process that is often used to model a re-
alizable noise process. The correlation function and the spectral
density function of the Ornstein–Uhlenbeck process �18� are

E�
��1�
��2�� = R��1 − �2� =
�0

2

exp�− �0��1 − �2�� ,

2�0
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S�	� =
−�

+�

R���ei	�d� =
�0

2

2��0
2 + 	2�

,

in which �0 characterizes the bandwidth of the noise and
�0 / �2�0

2� is related to the spectral density of the noise. For the
special case �0=�0→�, the Ornstein–Uhlenbeck process 
���
approaches the unit Gaussian white noise process Ẇ���.

Equation �16� can be simplified by removing the damping term
using the transformation q���=x���e−�� and time scaling t=	�,
where 	2=	0

2−�2, to yield

d2x�t�
dt2 + �1 − ���t��x�t� = 0, �19�

where �=�0 /	2.
For the bounded noise excitation �17�,

��t� = cos ��t�, d��t� = �dt + �dW�t� , �20�

where �=�0 /	, �=�0 /		, and W�t� is a standard Wiener process
in time t.

For the real noise modeled by an Ornstein–Uhlenbeck process
�18�

��t� = ��t�, d��t� = − ���t�dt + �dW�t� , �21�

where �=�0 /	, �=�0 /		.
The moment Lyapunov exponent of systems �16� and �19� are

related by

�q����p� = − p� + 	�x�t��p� . �22�

3.2 Two-Dimensional System Under Bounded Noise
Excitation. The eigenvalue problem governing the pth moment
Lyapunov exponent of system �19� can be derived using the for-
mulation for a general n-dimensional linear stochastic system pre-
sented in Sec. 2.

For the bounded noise excitation �20�, the generator of process
��t� is

G =
�2

2

�2

��2 + �
�

��
. �23�

The generator G of the bounded noise ��t� is strongly elliptic,
which is a required condition for the validity of Eq. �10� and the
uniqueness of its solution. Letting x1=x, x2= ẋ, the single degree-
of-freedom system �19� may be written in the form of state equa-
tion

�ẋ1

ẋ2
� = A����x1

x2
�, A��� = � 0 1

− 1 + � cos � 0
� . �24�

Apply the Khasminskii transformation �11�

s1 =
x1

a
= cos �, s2 =

x2

a
= sin �, a = �x� = �x1

2 + x2
2�1/2

�25�

and denote s= �s1 ,s2�T= �cos � , sin ��T. From Sec. 2, the operator
L�p� is given by Eq. �12�, where

q��,s� = sTA���s = � cos � cos � sin � ,

h��,s� = �A��� − q��,s�I�s

= � − � cos � cos2 � sin � + sin �

�− 1 + � cos ��cos � − � cos � cos � sin2 �
� .

�26a�
Hence
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hT �

�s
= h1

�

�s1
+ h2

�

�s2
= h1
− sin �

�

��
� + h2
cos �

�

��
�

= �− 1 + � cos � cos2 ��
�

��
�26b�

and

L�p� =
�2

2

�2

��2 + �
�

��2 + �− 1 + � cos � cos2 ��
�

��

+ � p cos � cos � sin � . �27�

3.3 Two-Dimensional System Under Real Noise Excitation.
For the Ornstein–Uhlenbeck process ��t� given by Eq. �21�, the
Stratonovich equation is the same as the Itô equation. The genera-
tor of process ��t� is

G = − ��
�

��
+

�2

2

�2

��2 . �28�

Letting x1=x, x2= ẋ, the single degree-of-freedom system can be
written in the form of state equations

�ẋ1

ẋ2
� = A����x1

x2
�, A��� = � 0 1

− 1 + �1/2� 0
� . �29�

Applying the Khasminskii transformation �25�, Eqs. �26� become

q��,�� = sTA���s = �1/2� cos � sin � ,

h��,�� = �A��� − q��,��I�s

= � − �1/2� cos2 � sin � + sin �

�− 1 + �1/2��cos � − �1/2� cos � sin2 �
� , �30�

hT �

�s
= h1

�

�s1
+ h2

�

�s2
= h1
− sin �

�

��
� + h2
cos �

�

��
�

= �− 1 + �1/2� cos2 ��
�

��
.

Hence, the eigenvalue problem governing the pth moment
Lyapunov exponent ��p� is given by Eq. �10� with the operator
L�p� given by Eq. �12�, i.e.,

L�p� =
�2

2

�2

��2 − ��
�

��
+ �− 1 + �1/2� cos2 ��

�

��

+ �1/2p� cos � sin � . �31�
The eigenvalue problems �27� and �31� can also be derived

using a more straightforward approach originally applied by
Wedig �17� for a two-dimensional linear Itô stochastic system.

4 Transformation of the Eigenvalue Problems for the
Moment Lyapunov Exponents

In this section, series expansions of the eigenfunctions are em-
ployed to convert the second-order partial differential eigenvalue
problems �27� and �31�, governing the pth moment Lyapunov ex-
ponents, to linear algebraic eigenvalue problems, which can then
be easily solved numerically.

4.1 Two-Dimensional System Under Bounded Noise
Excitation. For the two-dimensional system �19� under bounded
noise excitation �20�, the pth moment Lyapunov exponent satisfies
the eigenvalue problem �10� with Eq. �27�. Since the coefficients
of the eigenvalue problem are periodic functions in � of period 2
and in � of period , the eigenfunction T�� ,�� can be expanded in
double Fourier series in the complex form, which is much more

compact than the real form, as follows �18�:

Journal of Applied Mechanics
T��,�� = �
�=−�

�

�
k=−�

�

C�,ke
i���+2k��, �32�

where the coefficients C�,k are complex numbers. It can be easily
shown that the functions in Eq. �32� possess the orthogonality
conditions


�=0

2

ei�� · e−im�d� = 2��,m, 
�=0



ei2k� · e−i2n�d� = �k,n,

�33�

where ��,k denotes the Kronecker delta symbol.
Substituting Eq. �32� into Eq. �10� with L�p� given by Eq. �27�,

multiplying the resulting equation by e−i�m�+2n��, integrating with
respect to � from 0 to 2 and with respect to � from 0 to , and
employing the orthogonality conditions �33� yields, for m ,n
=0, ±1, ±2, . . .,

i 1
8���2�n − 1� − p��Cm−1,n−1 + Cm+1,n−1�

+ �2�n + 1� + p��Cm−1,n+1 + Cm+1,n+1��

+ i 1
2�n�Cm−1,n + Cm+1,n� + �− 1

2�2m2 + imv − i2n�Cm,n

= �Cm,n. �34�
Equations �34� represent a linear algebraic eigenvalue problem

of infinite dimension. In numerical analysis, only a finite number
of terms can be taken in the double Fourier series �32�. Hence, let
m take the values −M ,−M +1, . . . ,M −1,M, and n take the values
−N ,−N+1, . . . ,N−1,N; that is, there are 2M +1 terms in � and
2N+1 terms in � in the double Fourier series �32�.

For the ease of formulation, the two-dimensional array of the
coefficients Cm,n is transformed to the one-dimensional array yj
=Cm,n, where j= �2N+1��M +m�+N+n+1, for m=−M :M,
n=−N :N. Hence Eqs. �34� result in a linear algebraic eigenvalue
problem

Ay = �y , �35�

in which the dimension of matrix A is �2M +1��2N+1�� �2M
+1��2N+1�. For the jth row, j= �2N+1��M +m�+N+n+1,
m=−M :M, n=−N :N, the non-zero elements of A are

Aj,j = − 1
2�2m2 + imv − i2n, Aj,J− = Aj,J+ = i 1

2�n ,

Aj,J−−1 = Aj,J+−1 = i 1
8��2�n − 1� − p� ,

Aj,J−+1 = Aj,J++1 = i 1
8��2�n + 1� + p� ,

where J±= �2N+1��M +m±1�+N+n+1.

4.2 Two-Dimensional System Under Real Noise Excitation.
The moment Lyapunov exponent of the two-dimensional system
�19� under real noise excitation �21� is governed by the eigenvalue
problem �31�. The coefficients of Eq. �31� are periodic functions
in � of period . The eigenfunction T�� ,�� is expanded in terms
of sinusoidal functions and Hermite polynomials as

T��,�� = �
�=0

�

�
k=−�

�

C�,kh����ei2k�, �36�

where h���� is the normalized Hermite polynomial

h���� =
1

�2��!	�1/2
exp
−

�2

2
�H����, � = 0,1, . . . , �37�

in which H���� is the Hermite polynomial �19�. The normalized
Hermite polynomials h���� ,�=0,1 , . . ., form an orthonormal sys-

tem on the interval �−� , +��, i.e.,
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−�

+�

h����hm���d� = ��,m. �38�

Some relevant properties of the normalized Hermite polynomials
are derived in Appendix A. Double series expansions involving
Fourier series and Hermite polynomials have been applied by
Wedig �20� in obtaining solutions of two-dimensional Fokker–
Planck equations.

Substituting Eq. �36� into Eq. �31�, multiplying the resulting
equation by hm���e−i2n�, for m=0: +� and n=−� : +�, integrating
with respect to � from −� to +� and with respect to � from 0 to
, and utilizing the orthogonality condition �38� and identities
�43� leads to the equations

�−
�2

2

m +

1

2
� +

�

2
− i2n�Cm,n

+ i��2�n − 1� − p

4

	m

2
Cm−1,n−1 +	m + 1

2
Cm+1,n−1�

+
2�n + 1� + p

4

	m

2
Cm−1,n+1 +	m + 1

2
Cm+1,n+1�

+ n
	m

2
Cm−1,n +	m + 1

2
Cm+1,n�� +


�2

2
+ ��	m�m − 1�

2
Cm−2,n

+ 
�2

2
− ��	�m + 2��m + 1�

2
Cm+2,n = �Cm,n. �39�

Equations �39� are a system of infinity homogeneous linear alge-
braic equations for the unknown coefficients Cm,n, m=0: +�, n
=−� : +�. For numerical analysis, the series expansion �36� must
be truncated, i.e., m takes the values 0 ,1 , . . . ,M, and n takes the
values −N ,−N+1, . . . ,N−1,N. Map the two-dimensional array of
coefficients Cm,n to the one-dimensional array yj =Cm,n, j= �2N
+1�m+N+n+1. Equations �39� can then be written in the form of
a linear algebraic eigenvalue problem �35�, in which the dimen-
sion of matrix A is �M +1��2N+1�� �M +1��2N+1�. For row j
= �2N+1�m+N+n+1, the non-zero elements of matrix A are

Aj,j = −
�2

2

m +

1

2
� +

�

2
+ i2n ,

Aj,J−−1 = i�
2�n − 1� − p

4
	m

2
, Aj,J− = i�n	m

2
,

Aj,J−+1 = i�
2�n + 1� + p

4
	m

2
,

Aj,J+−1 = i�
2�n − 1� − p

4
	m + 1

2
, Aj,J+ = i�n	m + 1

2
,

Aj,J++1 = i�
2�n + 1� + p

4
	m + 1

2
,

Aj,J2
− = 
�2

2
+ ��	m�m − 1�

2
, Aj,J2

+ = 
�2

2
− ��	�m + 2��m + 1�

2
,

where J±= �2N+1��m±1�+N+n+1 and J2
±= �2N+1��m±2�+N

+n+1.

5 Numerical Results and Discussions
In Sec. 4, double series expansions of the eigenfunctions using
orthogonal functions are applied to transform the partial differen-
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tial eigenvalue problem �10� with L�p� given by Eqs. �27� and
�31�, respectively, into linear algebraic eigenvalue problems of the
form �35�. The resulting large square matrix A is sparse. To solve
system �35� numerically, one must take full advantage of the spar-
sity of matrix A in developing or selecting numerical algorithms.
Matlab 6 has an excellent sparse matrix handling facility and
functions for determining the eigenvalues of a large sparse matrix.
In this paper, the function eigs in Matlab 6 is used to evaluate a
few eigenvalues of system �35�. Numerical results are presented in
the following.

5.1 Two-Dimensional System Under Bounded Noise
Excitation. The bounded noise excitation �20� reduces to har-
monic excitation, i.e., ��t�=cos �t, when �=0. It is well known
that the resulting Mathieu’s Eq. �19� under harmonic excitation is
in parametric resonance when �=2,1 , 1

2 , 1
3 , 1

4 , . . . . The effect of
the noise on the parametric resonance or the stability of system
�19� is of particular interest.

Using a method of regular perturbation, Xie �7� obtained a
fourth-order weak noise expansion of the moment Lyapunov ex-
ponent of system �19� under bounded noise excitation �20�.

In the numerical solution of the linear algebraic eigenvalue
problem �35�, the numbers of terms of the series expansion are
taken as N=M =50, resulting in the dimension of matrix A being
10 201�10 201. The number of non-zero elements is 69 800 and
the density is

density =
Number of non-zero elements

Total number of elements
=

69 800

10 2012

= 6.708 � 10−4,

which indicates that matrix A is sparse. The approximate analyti-
cal result in Ref. �7� can be used as a seed in the Matlab function
eigs to determine the largest real eigenvalue of system �35�.

Numerical results of the moment Lyapunov exponents are
shown in Figs. 1–3 for �=2.0, 1.0, and 3.0, respectively, �=1.0,
and various values of �. When �=2.0, i.e., system �19� is in pri-
mary resonance when �=0, the approximate analytical result
agrees very well with the numerical results for � up to 0.5 as
shown in Fig. 1. For �=1.0, i.e., system �19� is in secondary
resonance, very good agreement between the two results is ob-
served for � as large as 0.8 �Fig. 2�. Discrepancy between the two
results increases rapidly when the value of � is increased as shown
in Figs. 1 and 2. When �=3.0, as shown in Fig. 3, system �19� is
not in parametric resonance and the two results agree extremely

Fig. 1 �x„t…„p… of system under bounded noise excitation, �
=1.0, �=2.0, primary resonance
well for � as large as 1.0.
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5.2 Two-Dimensional System Under Real Noise Excitation.
When the noise amplitude parameter � is small, a sixth-order per-
turbation of the moment Lyapunov exponent of system �19� under
the real noise excitation �21� is given in Ref. �6�. One extra pa-
rameter can be eliminated in Eqs. �19� and �21� as

ẍ�t� + �1 − �̂�̂�t��x�t� = 0,

d�̂�t� = − ��̂�t�dt + dW ,

where �̂�t�=��t� /�, �̂=��. Hence, without loss of generality, the
parameter � can be taken as 1.

In the numerical analysis, the numbers of the double series
expansions are taken as M =N=50. The dimension of matrix A in
the linear algebraic eigenvalue problem �35� is 5151�5151 and
the number of non-zero elements is 44 849. The density of non-
zero elements is 44 849/51512=1.690�10−3. Hence, matrix A is
also sparse and, as in Sec. 5.1, the eigs function in Matlab is used
to determine the largest real eigenvalue as the moment Lyapunov
exponent, with the approximate analytical result in Ref. �6� used
as the seed.

Typical results of the moment Lyapunov exponents obtained are
shown in Figs. 4–6 for �=2.0, 1.0, and 0.5, respectively, and
various values of the noise amplitude parameter �. The approxi-
mate analytical results given in Ref. �6� are also plotted in Figs.

Fig. 2 �x„t…„p… of system under bounded noise excitation, �
=1.0, �=1.0, secondary resonance

Fig. 3 �x„t…„p… of system under bounded noise excitation, �

=1.0, �=3.0, no resonance

Journal of Applied Mechanics
4–6 for comparison.
For �=2.0, the approximate analytical result and the numerical

result agree extremely well even for � as large as 1.0. For �
=1.0, some discrepancies are observed between these two results

Fig. 4 �x„t…„p… of system under real noise excitation, �=2.0,
�=1.0

Fig. 5 �x„t…„p… of system under real noise excitation, �=1.0,
�=1.0

Fig. 6 �x„t…„p… of system under real noise excitation, �=0.5,

�=1.0
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for �=0.8 and 1.0; as expected, the larger the value of �, the larger
the discrepancy. For �=0.5, differences between the analytical
and numerical results can be seen for smaller values of �1/2, such
as 0.4 and 0.5.

6 Conclusions
From the theory of stochastic dynamic systems, it is known that

the pth moment Lyapunov exponent of a general n-dimensional
linear stochastic system is the principal eigenvalue of a second-
order partial differential eigenvalue problem, as presented in Sec.
2. An analytical-numerical approach is proposed to obtain numeri-
cal values of the pth moment Lyapunov exponents and the method
is illustrated using a two-dimensional system under either a
bounded noise or a real noise parametric excitation. Double series
expansions of the eigenfunctions in terms of orthogonal functions
are taken to transform the partial differential eigenvalue problems
to linear algebraic eigenvalue problems. The eigs function in Mat-
lab for determining a few eigenvalues of a large sparse matrix is
then used to solve the linear eigenvalue problem to obtain the pth
moment Lyapunov exponents. The numerical results are compared
with the approximate analytical results with weak noise obtained
earlier �Refs. �6,7��. It is found that for small amplitude of the
exciting noise �, the approximate analytical results agree with the
numerical results extremely well. Discrepancies increase for large
values of �. The focus of this study is to present a numerical
approach for the determination of the pth moment Lyapunov ex-
ponents of linear stochastic systems for all values of p. Detailed
discussions on the effect of noise on the parametric resonance and
the stability of the dynamical systems can be found in Refs. �6,7�.

The analytical-numerical approach presented in this paper is
very efficient for lower-dimensional systems, for which the partial
differential eigenvalue problems can be easily transformed to lin-
ear algebraic eigenvalue problems. For systems of larger dimen-
sions, the conversion from partial differential eigenvalue problems
to linear algebraic eigenvalue problems using series expansions of
the eigenfunctions could be very involved and the dimensions of
the resulting linear algebraic eigenvalue problems could be very
large, which may not be handled efficiently even by using a ca-
pable algorithm for sparse matrices.

This is the first paper that presents a method for numerically
determining the pth moment Lyapunov exponents for all real val-
ues of p of two-dimensional systems under non-white noise exci-
tations. Its usefulness and importance is twofold. First, it verifies
the validity of the approximate analytical results and determines
the range of applicability of the parameter �. Second, for many
engineering applications, the amplitude of the noise � is not small
and numerical approaches must be employed to determine the pth
moment Lyapunov exponents.

The analytical-numerical method presented can be applied to
systems under noise excitations with explicit analytical descrip-
tions, such as bounded noise or filtered white noise. However, it is
not applicable to systems under arbitrary noise excitations with a
knowledge of time series only, because it is not possible to set up
the partial differential eigenvalue problems. In this case, a Monte
Carlo simulation approach may have to be applied. Unfortunately,
currently there is no numerical algorithm available. The develop-
ment of a Monte Carlo simulation algorithm for the determination
of the pth moment Lyapunov exponent of a general n-dimensional
system will be the focus of future study.
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Appendix A. Formulas of the Normalized Hermite Poly-
nomials

It is well known that the Hermite polynomials satisfy the iden-
tities

Hm+1��� = 2�Hm��� − 2mHm−1��� ,
�40�

Hm� ��� = 2mHm−1��� ,

from which it can be shown that

�Hm��� = 1
2Hm+1��� + mHm−1��� ,

�2Hm��� = 1
4Hm+2��� + �m + 1

2�Hm��� + m�m − 1�Hm−2��� ,

�41�
�2Hm� ��� = mHm��� + 2m�m − 1�Hm−2��� ,

Hm� ��� = 4m�m − 1�Hm−2��� .

Using Eqs. �40� and �41� and the definition of the generalized
Hermite polynomials, one obtains

�hm��� =	m + 1

2
hm+1��� +	m

2
hm−1��� ,

�hm� ��� = −
	�m + 2��m + 1�

2
hm+2��� − 1

2hm��� +
	m�m − 1�

2
hm−2��� ,

�42�

hm� ��� =
	�m + 2��m + 1�

2
hm+2��� − �n + 1

2�hm���

+
	m�m − 1�

2
hm−2��� .

Employing the orthogonality condition �38�, the following results
can be derived:


−�

+�

�h����hm���d� =	m + 1

2
��,m+1 +	m

2
��,m−1,


−�

+�

�h�����hm���d� = −
	�m + 2��m + 1�

2
��,m+2 − 1

2��,m

+
	m�m − 1�

2
��,m−2, �43�


−�

+�

h�����hm���d� =
	�m + 2��m + 1�

2
��,m+2 − �n + 1

2���,m

+
	m�m − 1�

2
��,m−2.
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The Load Capacity of a Kagome
Based High Authority Shape
Morphing Structure
A protocol for optimizing a high authority shape morphing plate is described. The design
incorporates an active Kagome back-plane capable of changing the shape of a solid face
by transmitting loads through a tetrahedral truss core. The optimization assesses the
required geometric dimensions and actuator specifications in order to maximize the per-
missible shape changes and load capacity. The critical external loads for all failure
mechanisms of the individual components are calculated and used as constraints in the
optimization. Resistance of the structure to actuation is presented as an additional con-
straint. The ensuing relations are subsequently used to choose the best material for a
given application. Numerical examples of the procedure are given for a defined
structure. �DOI: 10.1115/1.2042482�
1 Introduction

Shape morphing structures are designed to displace surfaces
while resisted by large pressure loads �or heavy weights�. An ap-
proach for addressing this challenge is to seek structures that are
simultaneously statically determinate yet stiff �1–6�. One manifes-
tation is the Kagome structure �Fig. 1� �2,3,6� which can be actu-
ated into relatively intricate surface shapes. The structure consists
of a solid face sheet with a Kagome, active back-plane and a
tetrahedral core. Replacing various truss elements in the back-
plane with linear actuators enables the shape of the solid face to
be changed. A preliminary demonstration structure has been con-
structed and used to reveal the practical potential �Fig. 2� �6�. To
facilitate fabrication, this structure was made using 304 stainless
steel. The length of the panel was chosen to include six hexagonal
units of the Kagome plate, while the width incorporated four.
Hinging and twisting have been demonstrated and shown to be
consistent with linear models �6�. To achieve smooth contour
changes at low structural weight, the solid face and the back-plane
were stiffness matched. Multiple virtual control points define the
shape change �4–6�. The demonstration structure was found to be
actuator limited, because the actuators ceased to function at loads
much lower than the passive load capacity of the structure.

The intent of the present article is to provide a wider explora-
tion of the authority space for this structure. It will embrace a
broad range of material properties and assume actuators having
load capacity substantially superior to those used in the prelimi-
nary demonstration. A corollary will be an optimization protocol.
For tractability and clarity of presentation, the present assessment
is limited to simple hinging of the demonstration structure �Fig.
2�. Yet, the approach has much wider applicability and its imple-
mentation for the attainment of more complex shape changes will
be presented in a forthcoming article. The procedure ascertains the
stresses, relative to the failure envelope, and determines the actua-
tor authority needed to maximize the load capacity as a function
of designated displacements.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received July 23, 2004; final manuscript
received February 14, 2004. Review conducted by Z. Suo. Discussion on the paper
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied
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until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.

128 / Vol. 73, JANUARY 2006 Copyright © 2
2 Passive Load Capability
The passive loads that can be supported without failure have

been derived for a cantilever plate subject to a line load, P, im-
posed at the free end �Fig. 1� �7�. When optimized for loadings
that cause the solid face to experience compression, its structural
efficiency is competitive with truss and honeycomb core panels
�5�. The basic results needed for optimization will be presented
with the assumption that the Kagome members are connected by
pin joints. Relative to bonded joints this choice allows a fully
analytical investigation. It does so without affecting the yield
loads, while providing a conservative assessment of the buckling
loads.

In the ensuing analysis, the subscripts k, c, and f refer to the
Kagome back-plane, core, and solid face, respectively. All truss
members have a square cross section, thickness dx, and a length Lx
�Fig. 1�. The solid face has thickness df. The width and span of the
structure are denoted w and s, respectively. The lengths of the
Kagome and core members are equal �L=Lk=Lc�, ensuring maxi-
mum resistance to core shear �5�. The Young’s modulus is desig-
nated E, and yield strength �Y. Failure loads are denoted PXZ, with
subscript X referring to the component and Z to the failure mode:
Y for yielding and B for buckling/wrinkling. The actuator is con-
sidered to cease functioning at axial load PACT.

Kagome back-plane. Initially, the stiffness of the solid face is
chosen to match that for the back-plane �by adjusting its thick-
ness�. Under this assumption, the nominal stress induced in the
back-plane is related to the bending moment, M = Ps, and the core
height, Hc=�3/2L, by �8�

�11 =�3

2

Ps

dfwL
. �1a�

Modifications that arise when the system is not stiffness matched
are presented in the Appendix. There are three Kagome truss ori-
entations �Fig. 1�: one parallel to the width �truss A� and the
others at ±30 deg to the span �truss B�. For the present loading
state, the latter two are equivalent. The nominal stress �11 is re-
lated to that on a truss member �truss by �2�

�11 = − �3
df

L
�truss �truss A� and �11 =

�3

2

df

L
�truss �truss B�

�1b�

If the back-plane is loaded in compression, trusses in orientation

A are in tension and those in orientation B are in compression and
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vice versa. Equating ��truss� to the yield strength, �Y, gives the end
load that can be supported without failure by yielding as

PKY � �2
wdk

2

s
�Yk �truss A� and PKY �

1
�2

wdk
2

s
�Yk �truss B� .

�2�
The permissible load is always smaller for trusses in orientation
B.

The treatment of buckling is slightly more complex, since the
direction of the external load has to be considered. The load that
can be supported without buckling if the solid face is in tension
�Kagome in compression, i.e., only trusses in B orientation can
buckle� is

PKB �
�2

12�2

wdk
4

L2s
Ek �3�

Core. The tetrahedral core must sustain the shear force. The
end load supported before yielding is �7�

Fig. 1 „Color… Schematic representation of the Kagome-struct
Kagome back-plane is red. Actuators are placed in lieu of the K
deformation.

Fig. 2 „Color… Photo of the actual demo structure. The aluminu

section and extended by 10%.

Journal of Applied Mechanics
PCY �
1
�6

wdc
2

L
�Yc. �4�

�Note that this core has half the number of tetrahedral element as
a truss core sandwich panel �2�.� The equivalent result for elastic
buckling is

PCB �
�

4�6

wdc
4

L3 Ec. �5�

Solid Face. The solid face has thickness

df = �sm
Ek

Ef

dk
2

�3Lk

�6�

The scaling factor �sm is unity when the face is stiffness matched
�solid face sheet has the same linear elastic load-deflection behav-
ior as the Kagome back-plane when loaded in tension�: �sm�1
signifies a solid face stiffer than the back-plane and vice versa. In
this analysis the face sheet stiffness for a given material combi-

. The face sheet is shown in blue, the core in green, and the
ome members. The control points are used to define the target

solid face sheet is used. Actuators are placed along the middle
ure
ag
m
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nation is varied by changing the thickness of the solid face sheet.
For example, �sm=1 for a stainless steel back-plane �Ek

=200 GPa� and a polycarbonate �Ef =4 GPa� solid face requires
both faces to have the same thickness df �dk. For designs with
df �Hc, the load that can be supported is obtained from 1�a� by
equating �11 to �Yf:

PFY ��2

3

wdfL

s
�Yf �7�

3 Actuation Resistance
When an actuation strain is imposed, the structure induces

forces on the actuator, FACT �6,9�. These forces must be evaluated
and compared with the operating characteristics of the actuator. To
illustrate the procedure, results are presented for actuators placed
along the mid-section, half way between the support and the free
end of the cantilever �Fig. 2�. For hinging, all actuators experience
the same extension and the resistance of the structure scales as �6�

� =
1 + A�Ef/Ec�� + B�Ef/Ec�2�2

C + D�Ef/Ec��
�8�

where � is the nondimensional resistance,

� =
FACTL3

Ec	dc
4 �9�

and � is a stubbiness index,

� = � df

dc
	3 w

dc
�10�

Here 	 is the actuator displacement and A ,B ,C ,D are nondimen-
sional coefficients. When Ef =Ec, Eq. �8� reduces to

FACTL3

Ec	dc
4 = 0.2 − 0.8� + 13�2 �11�

The passive load induces another force FEXT on the actuators,
obtained from �1b� as

FEXT =
0.58�3s

�2
PACT �12�

Since the two forces are additive, the total force on the actuators is

FTOT = FEXT + FACT

Equating to the load capacity of the actuator, FACT
max , the maximum

permissible external load becomes

PACT = �FACT
max − FACT�

�2

0.58s�3
�13�

4 Geometric Optimization
The objectives are to ascertain geometries that satisfy various

design criteria, subject to the avoidance of all failure mechanisms.
Throughout, the solid face sheet is assumed to be stiffness
matched to the back-plane ��sm=1�. The three criteria are as fol-
lows:

�i� Maximize the externally applied load by identifying the first
subsystem to fail:

Pext
max = min�PKY,PKB,PCY,PCB,PFY,PFB,PACT� �14�

�ii� Maximize the displacement exerted by the actuators without
causing failure of any other subsystem:

Pext
passive = min�PKY,PKB,PCY,PCB,PFY,PFB� �15a�

	max = �FACT
max − Pext

passive0.58s�3	 L3

4 �15b�
�2 �Ecdc
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�iii� Determine the actuator load capacity needed to lift a speci-
fied passive load:

FACT
required = Pext

passive0.58s�3
�2

+ FACT �16�

The variables are the thicknesses of the back-plane dk and the core
members dc. In an application environment the truss length must
coincide with the size of the actuators and is not a variable. For
simplicity of presentation �as already noted�, the other parameters
are those applicable to the demonstration structure �6� �L=Lk
=Lc=5.1 cm, s=0.53 m, w=0.41 m, Ec=Ek=Ef =200 GPa, �Yc
=�Yk=�Yf =200 MPa �304 stainless steel��.

The load capacity at specified mass is typically the important
engineering metric. To ascertain this quantity, note that the mass
of the structure is

m = 24
6�Lk −
1
�3

dk	dk
2
k + ��3

2
+ 6Lc	dc

2
c + 2�3Lk
2df
 f�

�17�

with 
k ,
c ,
 f being the densities of the Kagome, core, and solid
face sheet materials, respectively. Invoking �14�, the specific load
capacity becomes

P̄ =
Pext

max

m
. �18�

5 Load Capability
The maximum load capability is limited either by structural

failure �Eqs. �2�–�5� and �7�� or by the actuator capacity �Eq.
�13��. A failure map calculated using �14� is presented as a surface
in three-dimensional space comprising the coordinates, Pext ,dc ,dk
�Fig. 3, inset�, with the truss thickness, dc and dk, as variables.
Four failure domains are apparent. For very thin members, failure
is dominated by buckling of either the core or the Kagome mem-
bers. As the members become stubbier the failure mode transitions
to face yielding. Eventually �for even greater stubbiness�, the load
becomes actuator limited. The maximal passive load capability is
always at the confluence of the actuator limit and one �or more� of

Fig. 3 Maximum load capability for a given actuator capacity
and extension. All structure failure mechanisms except face
wrinkling are included.
the structural limits. Note that, for a system with a 250 N actuator
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subject to 10% extension, the maximum load capability is 640 N,
achieved with core and Kagome cross sections dc=1.4 mm and
dk=3.0 mm, respectively.

This geometry is only optimal for one material and one actua-
tor. Every other combination will exhibit another point. The maxi-
mum permissible load capability for all possible actuators is com-
puted using a nonlinear optimization with Mathematica �10�. A
typical result �Fig. 4� reveals that the load capability increases
monotonically with increasing actuator capacity but decreases
with increasing deformation. Since the latter is the limiting fea-
ture, Fig. 4 can be used to determine the actuator load capacity
required to realize a specified load capability.

The maximum displacement that can be achieved �16� for an
actuator capacity of 250 N is plotted in Fig. 5. To avoid the abrupt
load drops when failure occurs by buckling, the dimensions of the
members have been chosen to reside in the face yield regime. The
requirements on the actuator capacity �for 10% extension� are
shown on Fig. 6. To assure failure by face yielding, the capacity

Fig. 4 Maximum load capability as a function of actuator ca-
pacity and actuator

Fig. 5 Contour of actuator extension for a given actuator ca-
max
pacity of 250 N. The plot has been truncated at � =51 mm.

Journal of Applied Mechanics
must be Fact
max�75 N. Corresponding plots for other values of ac-

tuator capacity and displacement can be readily generated.

6 Influence of Material Properties
The previous assessments have been performed for fixed values

of the material properties, E and �Y. The role of these properties is
now explored by optimizing for ranges of Young’s modulus
�1–300 GPa� and yield strength �50–900 MPa�. Many different
failure maps have been generated �not shown for conciseness�.
The results are summarized in Fig. 7, which plots trends with face
thickness for five cases. It is apparent that when the face is in
tension �no wrinkling� materials with high yield strength ��Y

�200 MPa� provide the greatest load capacity. This maximum
occurs for small relative face thickness, 1��sm�3. The modulus
is relatively unimportant in this range. Low modulus only exerts
an adverse influence at larger �sm where the load capacity is sub-
optimal. Materials with lower yield strength ��Y �50 MPa� are
clearly inferior �they permit appreciably lower load capability for
all �sm�.

The effect of varying the actuator capacity on the load capabil-
ity per unit mass �Eq. �18�� is plotted in Fig. 8 for various engi-

Fig. 6 Required actuator capacity for a given actuator exten-
sion of 10%. The plot has been truncated at FACT

max =250 N.

Fig. 7 Effect of variation of face thickness on load capacity for

various materials
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neering materials. These materials include a titanium alloy �Ti-
6Al-4V�, an aluminum alloy �Al 6061-T6�, two stainless steels
�304 and 440C�, and a polymer �PET�. Every location on this
figure represents a nonlinear optimization with the specified ma-
terial parameters and actuator capacity. The calculations are based
on a 10% actuator extension. For each material, there is a peak
specific load capability and associated actuator capacity. The de-
crease at large actuator capacity arises because stubbier trusses
and a thicker face are needed to support the larger loads, causing
the weight to increase more rapidly than the rise in load capability.
Note that, when only low capacity actuators are available, Al al-
loys are preferred. Conversely, when actuator capacity is unlim-
ited, Ti alloys provide a much greater load capability per unit
mass than all other materials.

7 Concluding Remarks
An assessment of the requirements and properties of a Kagome

based shape morphing structure has been conducted. The fully
optimized structure always resides at the confluence of the actua-
tor limit and one �or more� structural failure mechanism. The most
robust design is located just within the actuator-limited domain.
Designs within the buckling domain should be avoided, because
of the drop in load capacity. Those located in yield domains might
be acceptable, since strain hardening provides some safety mar-
gin.

The load capability scales almost linearly with the actuator ca-
pacity but decreases at large deformations. When the passive face
is loaded in tension, materials with high yield strength provide the
greatest load capacity. The modulus is relatively unimportant. The
load capability per unit mass exhibits a maximum. When the ac-
tuator capacity is unlimited, Ti alloys provide the greatest load
capability per unit mass. Also the greatest load capacity is ob-
tained with solid face sheet thickness of one to three times that of
the stiffness matched thickness. Thicker faces increase the resis-
tance against actuation without increasing the overall load capac-
ity of the passive structure.

Since the constraint equations are quite general �except that the
length of the Kagome and core members must be equal� other
actuator locations and shape changes can be readily introduced by
changing Eqs. �11� and �12�.

Nomenclature
dk ,dc ,df � thickness of Kagome members, core members,

solid face sheet
Lk ,Lc � length of Kagome members, core members

L � length of Kagome and core members �Lk=Lc

Fig. 8 Specific external load capacity as a function of the ac-
tuator load capacity for various engineering materials
required�

132 / Vol. 73, JANUARY 2006
w ,s ,Hc � width and span of the structure, height of the
core

�sm � solid face thickness scaling factor
Ek ,Ec ,Ef � Young’s modulus of Kagome, core, and solid

face
�Yk ,�Yc ,�Yf � yield strength of Kagome, core, and solid face


k ,
c ,
 f � Density of the Kagome, core, and solid face
sheet

PKY , PCY , PFY � external load to yield Kagome, core, and solid
face

PKB , PCB , PFB � external load to buckle Kagome, core, and
solid face

PACT � external load to cease actuator function
FACT,FEXT � force on actuators due to structural resistance

and external load
FACT

max � load limit of actuator
Pext ,	 � permissible external load, displacement of

actuator
Pext

max,	max � maximum permissible external load and actua-
tor displacement

Appendix: Solid Face in Compression
In normal operation, the passive loads place the solid face in

tension. Should the design require the face to experience compres-
sion, it would be susceptible to wrinkling at the load:

PFB �
2.24�3

�2

df
3

L
Ef �A1�

The ratio of the loads that cause failure by yielding and wrinkling

Fig. 9 Variation of the face thickness and comparison of face
wrinkling to face yielding. „a… Face thickness fixed at �sm=1. „b…
Face thickness fixed varied �sm=1, 5 and 15.
is given by combining Eqs. �7� and �A1�:
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PFY

PFB
=

1

3.36

wL2

sdf
2 Yf �A2�

where Yf =�Yf /Ef is the yield strain of the solid face. The trends
for a stiffness-matched system ��sm=1� are shown in Fig. 9�a�;
while those for systems with different �sm are shown on Fig. 9�b�.
For clearance of visualization only a cut along the dk=dc plane is
shown. When stiffness matched and loaded in tension, the maxi-
mum load capacity �Fig. 9�a�� occurs at the confluence of face
yielding and actuator failure: with load capability, Pext

max�0.5 kN.
However, when loaded in compression, failure is limited by wrin-
kling and occurs at a much lower load, Pext

max�30 N. Increasing
the face thickness �� �1� dramatically increases the wrinkling

Fig. 10 Maximum load capability as a function of the solid
face sheet thickness with and without face wrinkling
sm

Journal of Applied Mechanics
resistance �Fig. 9�b��: but the benefits are offset by a correspond-
ing increase in actuation resistance. The highest load capability in
compression is Pext

max�150 N when �sm�5. Note that the load
capability can be increased by lifting the restriction dk=dc.

The trends in maximum load capability with relative face thick-
ness obtained using Mathematica are plotted in Fig. 10. Thicker
faces have no benefit when in tension: they only serve to increase
the actuation resistance. When in compression, while thicker faces
resist wrinkling, they also increase the actuation resistance. Upon
optimizing, these effects compensate at thickness �sm�9. For
even thicker faces, wrinkling is no longer an active constraint and
the structure always fails by Kagome buckling.
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Periodic Antiplane Cracks in
Graded Coatings Under Static or
Transient Loading
A periodic array of cracks in a functionally graded coating bonded to a homogeneous
substrate is considered. The medium is subjected to transient or static mechanical loads.
The problem is formulated in terms of a singular integral equation with the crack face
displacement as the unknown variable. In addition to the time-varied stresses and stress
intensity factors for various parameters of the problem, the effect of periodic cracking on
the relaxation of the transient stress on the coating surface is discussed. Also included is
the influence of the material gradient (material nonhomogeneity) on the crack tip inten-
sity factors and stresses. Solutions for a single graded layer and a graded coating bonded
to an infinite substrate are given. �DOI: 10.1115/1.2043190�
1 Introduction
In functionally graded materials �FGMs�, the spatial variation

of thermal and mechanical properties strongly influences the re-
sponse to loading �1�. The presence of a functionally graded in-
terface between two dissimilar materials, for example, can lead to
a relaxation in stresses associated with discontinuities at bimate-
rial interfaces �2–6�. In fracture mechanics applications in nonho-
mogeneous materials, assuming an exponential spatial variation of
the elastic modulus, Erdogan and his coworkers �see, for example,
�7–10�� have provided a series of analytical solutions for cracks in
nonhomogeneous elastic solids under mechanical loading. A num-
ber of other similar studies include �11–17�.

Because fracture remains a key failure mode of FGMs, success-
ful application of these materials depends on an understanding of
their fracture mechanics. Jin and Noda �18� demonstrated the cor-
respondence between near-tip field in homogeneous and nonho-
mogeneous bodies, which permits the application of standard
analysis techniques to cracks in FGMs. Delamination and crack-
ing of FGMs at coating-substrate interfaces due to thermal loads
are the focus of investigations �3,19–21�. Kim and Paulino �22�
developed a finite element methodology for the fracture analysis
of orthotropic functionally graded materials where cracks are ar-
bitrarily oriented with respect to the principal axes of material
orthotropy. Wang et al. �23� proposed a multilayered model for a
functionally graded interfacial zone between two dissimilar elastic
solids. Recently, some authors have addressed several dynamic
fracture problems in functionally graded materials. Li et al. �24�
investigated the dynamic behavior of a cylindrical crack in a func-
tionally graded interlayer under torsional loading. Zhang et al.
�25� investigated a transient dynamic crack in a FGM by using a
hypersingular time-domain boundary integral equation method.
Investigated in �26,27� are the plane dynamic fracture problems of
functionally graded materials. Developed in �28� are stress and
displacement fields for a crack propagating along the gradient in a
functionally gradient material, which has �i� a linear variation of
shear modulus with a constant density and Poisson’s ratio, and �ii�
an exponential variation of shear modulus and density under a
constant Poisson’s ratio. In �29�, a generalized elastic solution for

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received September 17, 2004; final
manuscript received March 8, 2005. Review conducted by Z. Suo. Discussion on the
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of
Applied Mechanics, Department of Mechanical and Environmental Engineering,
University of California-Santa Barbara, Santa Barbara, CA 93106-5070, and will be
accepted until four months after final publication in the paper itself in the ASME

JOURNAL OF APPLIED MECHANICS.

134 / Vol. 73, JANUARY 2006 Copyright © 2
an arbitrarily propagating crack in FGMs was obtained through an
asymptotic analysis. Experimental research was conducted for a
functionally graded material under low-velocity impact loading in
�30�. A theoretical investigation of the singular behavior of a
propagating crack in a FGM with spatially varying elastic proper-
ties under plane elastic deformation is investigated in �31�. Ex-
perimentally, the behavior of a propagating crack in functionally
graded materials was characterized using dynamic photoelasticity
in conjunction with high-speed photography �32�, and the crack
tip deformations and fracture parameters in a functionally graded
beam are evaluated under static and dynamic loading conditions
�33�.

Despite a variety of challenging issues related to certain crack
problems in the functionally graded nonhomogeneous media have
been addressed, one remaining problem that needs to be fully
understood is that of a periodic array of parallel cracks in such
media. Past experience suggests that cracks in nonhomogeneous
materials may be either a single dominant crack or a roughly
regular array of periodic cracks �34–38�. To date, such periodic
array of cracks in functionally graded materials has been solved
for the antiplane shear deformation �39�, in-plane mechanical de-
formation �40�, and thermal load �41�. To our best understanding,
no paper has been published for the transient fracture of function-
ally graded materials with periodic surface cracks.

This paper focuses on the static and transient solutions for a
periodic array of cracks in a functionally graded coating bonded to
a homogeneous half-plane. For simplicity, the antiplane problem
is considered. Such a problem is important not only because a
practical FGM may subject to an antiplane mechanical deforma-
tion, but also because it can provide a useful analogy to the most
important in-plane crack problem. It is assumed that the thickness
variation of the shear modulus of the coating is exponential. By
defining the crack surface displacement as the unknown function,
a singular integral equation is derived and is solved numerically.
The objective of the study is to obtain a series of solutions for
examining the influence of such factors as material nonhomoge-
neity constants, crack spacing on the stress and stress intensity
factors, both at transient state and steady state.

2 Description of the Problem
Consider a graded coating bonded to a homogeneous substrate.

There is a row of periodic cracks vertical to the surface of the
medium, as shown in Fig. 1. The upper and lower tips of the
cracks terminate at y=b and y=d, respectively. The length of the

cracks is 2a. The principal axes of the medium are along the x-

006 by ASME Transactions of the ASME



and y-axes. The thickness of the coating layer is as h, which is
considerably smaller than the thickness of the substrate.

In this paper we assume that the medium has orthotropic prop-
erties. To make the analysis tractable, it is further assumed that the
shear moduli and the mass density of the graded region are given
by the following two-parameter expression:

�x�y� = cx0e�y, �y�y� = cy0e�y, ��y� = �0e�y �1�

where �0 is the mass density, and cx0 and cy0 are elastic constants
on the surface y=0. Many authors have used the assumptions
shown in Eq. �1� for FGM applications �e.g., �7–17,26,27,42–44��.
Wang et al. have demonstrated that the assumption of an exponen-
tially varied gradient is reasonable for FGMs subjected to me-
chanical loading �45�, provided that the crack is not too long
compared to the medium size.

Under out-of-plane displacement w�x ,y�, the constitutive equa-
tions have the following forms:

�xz = cx0e�y �w

�x
, �yz = cy0e�y �w

�y
, for the graded layer

�2a�
and

�xz = cxh
�w

�x
, �yz = cyh

�w

�y
, for the substrate �2b�

in which cxh and cyh are elastic constants in the substrate �i.e., y
�h�.

The equilibrium equation, �zx,x+�zy,y =�w,tt, with the substitu-
tion of Eqs. �2�, becomes

cx0
�2w

�x2 + cy0
�2w

�y2 + cy0�
�w

�y
= �0

�2w

�t2 , for the graded layer

�3a�
and

cxh
�2w

�x2 + cyh
�2w

�y2 = �h
�2w

�t2 , for the substrate �3b�

in which �h=�0e�h is the density of the substrate.
Since we are interested in the crack tip behaviors, the problem

can be reduced to a perturbation problem in which the crack sur-
face tractions are the only nonzero external loads. Therefore, all
the field quantities are zero at infinity. The stress also vanishes on
the top surface of the medium such that

�yz�x,y = 0� = 0 �4�

At the interface y=h the displacement w and the stress compo-
nent �yz must be continuous. Therefore, we have

�yz�x,h − 0� = �yz�x,h + 0� �5a�

w�x,h − 0� = w�x,h + 0� �5b�
In the problem under consideration, the loading condition is

Fig. 1 Periodic array of cracks in a graded coating bonded to
a semi-infinite homogeneous substrate; h is the coating thick-
ness; crack tips are located at y=b and y=d. 2c is the crack
spacing. If b is larger than zero the cracks are embedded in the
strip. For edge cracks, b equals zero.
antisymmetric with respect to the x=0 plane. Therefore, it is suf-
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ficient to consider the right half of the medium �i.e., the x�0
part�. Because of periodicity, the problem can be considered for
the strip 0�x�c, subjected to an additional homogeneous bound-
ary condition:

w�c,y� = 0 �6�
Generally, the crack surfaces are traction free. By considering

field quantities near the crack front, the crack problem can be
treated by the superposition technique. That is, one first solves the
problem without any cracks and then adds equal and opposite
values of the stresses to the crack faces to form the applied loads.
Then, the mixed boundary conditions on the cracked planes can
be stated as follows:

�xz�0,y� = − �0�y�H�t�, y � �b,d� �7a�

w�0,y� = 0, y � �b,d� �7b�

in which H�t� denotes the Heaviside function, the quantity �0 is
the stress in the absence of any cracks.

The solution of the strip is obtained in terms of some unknown
coefficients. These unknown coefficients are then determined by
applying the surface condition �4�, interface conditions �5�, peri-
odic condition �6�, and by introducing an auxiliary function along
the cracked plane �i.e., the x=0 plane�. The auxiliary function
would then be determined from the crack face boundary condi-
tions �7�.

3 Solution for the Graded Layer and the Substrate
In the following analysis, the Laplace transform will be

adopted. The Laplace transform of a function f�t� is defined as

f*�p� =�
0

	

f�t�exp�− pt�dt �8a�

whose Laplace inversion is

f�t� =
1

2
i�Br

f*�p�exp�pt�dp �8b�

in which Br stands for the Bromwich path of integration. The
time-dependence in Eqs. �3� can be eliminated by the application
of Eqs. �8�.

3.1 Solution for the Graded Layer. As pointed out above,
the problem can be considered for the strip 0�x�c. Employing
the Fourier transform, the displacement can be expressed in terms
of unknowns Fmn and Gm��� in the following form:

w*�x,y,p� = �
n=1

	

�
m=1

2

Fmn exp�sn�my�sin�snx�

+
1

2

�

−	

	

�G1 exp����x� + G2 exp�− ���x��

�exp�− i�y�d� �9�

where sn=n
x /c and

�1�sn� =�cx0

cy0
+

�0p2

cy0sn
2 + 	 �

2sn

2

−
�

2sn
�10a�

�2�sn� = −�cx0

cy0
+

�0p2

cy0sn
2 + 	 �

2sn

2

−
�

2sn
�10b�

��� =�cy0

cx0
+

i�cy0� + �0p2

cx0�2 �10c�

Substituting Eq. �9� into the constitutive equations �2�, the stresses

can be obtained
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�xz
* �x,y,p� = cx0e�y�

n=1

	

sn�
m=1

2

Fmn exp�sn�my�cos�snx�

+
1

2

cx0e�y�

−	

	

����G1

�exp����x� − G2 exp�− ���x��exp�− i�y�d�

�11a�

�yz
* �x,y,p� = cy0e�y�

n=1

	

sn�
m=1

2

�mFmn exp�sn�my�sin�snx�

−
i

2

cy0e�y�

−	

	

��G1 exp����x� + G2

�exp�− ���x��exp�− i�y�d� �11b�

3.2 Solution for the Substrate. Considering regularity con-
ditions at infinity �y→	�, the displacement for the strip 0�x
�c in the homogeneous substrate can be expressed in terms of
unknowns Fn as

w*�x,y,p� = �
n=1

	

Fn exp�sn�y�sin�snx� �12�

in which

��sn� = −�cxh

cyh
+

�hp2

cyhsn
2 �13�

The stresses in the substrate associated with Eq. �12� are

�xz
* �x,y,p� = cxh�

n=1

	

snFn exp�sn�y�cos�snx� �14a�

�yz
* �x,y,p� = cyh�

n=1

	

�Fn exp�sn�y�sin�snx� �14b�

The problem under consideration has been reduced to the deter-
mination of the coefficients Fmn, G1, G2, and Fn. To this end, the
surface and periodicity conditions must be satisfied.

4 Satisfying the Periodicity, Surface, and Interface
Conditions

Introduce an auxiliary function g in the following manner
�35,39�:

g�y� = w*�+ 0,y,p�, y � �b,d� �15a�

g�y� = 0, y � �0,b� + �d,h� �15b�

In what follows, the unknown coefficients Fmn, Gm, and Fn will be
expressed in terms of the auxiliary function g�y� from the surface,
interface, and periodicity conditions.

4.1 Satisfying the Periodicity Conditions. From the period-
icity condition �6� and with the substitution of Eq. �9� into Eqs.
�15�, Gm can be expressed in terms of the auxiliary function g as

Gm��� = bm�
b

d

g�r�exp�i�r�dr �16�

where �m=1,2�, bm are known coefficients

b1��� =
1

, b2��� = −
exp�2���c�

�17�

1 − exp�2���c� 1 − exp�2���c�
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Equation �16� relates the functions Gm�m=1,2� to the auxiliary
function g. To relate the coefficients Fmn and Fn to g�y�, the sur-
face and interface conditions �4� and �5� must be considered.

4.2 Satisfying the Surface and Interface Conditions. On
the top surface y=0, the stress free boundary condition �4� gives

�
m=1

2

�mFmn =
1


c�
b

d

�1�n,r�g�r�dr �18�

in which the coefficient �1 is obtained from the theory of residues
as

�1�n,r� = − 
�1
2 exp�− sn�1r� �19�

At the interface y=h, the stress continuity condition �5a� gives

�
m=1

2

�mFmn exp�sn�mh� − �Fn exp�sn�h� =
1


c�
b

d

�2�n,r�g�r�dr

�20�

in which the coefficient �2 is also evaluated from the theory of
residues as

�2�n,r� = 
�2
2 exp�sn�2�h − r�� �21�

Furthermore, from the displacement continuity condition �5b�, we
obtain

�
m=1

2

Fmn exp�sn�mh� − Fn exp�sn�h� = −
1


c�
b

d

�2�n,r�g�r�dr

�22�

The linear algebraic equations �18�, �20�, and �22� can be used to
determine the remaining coefficients Fmn and Fn, in terms of the
auxiliary function g. The coefficients Fmn, which will be used
later, can be expressed as

Fmn =
1


c�
b

d

fmn�r�g�r�dr �23�

where fmn are known functions of r.
Equation �23� gives the coefficient Fmn in terms of the auxiliary

function g�y�. In the case of a single coating, Fn are zero and the
remaining coefficients Fmn can be determined from Eqs. �18� and
�20� �if the surface y=h is stress free� or from Eqs. �18� and �22�
�if the surface y=h is mechanically constrained�.

Subsequently, the auxiliary function g�y� will be determined
from the mixed-mode boundary condition on the cracked plane
through an integral equation.

5 Crack Problem
From Eq. �11a�, and with the substitution of Eqs. �16� and �23�,

the stress �xz on the x=0 plane in the Laplace transform domain
can be expressed as

�xz
* �0,y,p� = cx0e�y��

b

d

��y,r�g�r�dr +�
b

d

��y,r�g�r�dr�
�24�

with

��y,r� =
1


c�
	

sn�
2

exp�sn�my�fmn�r� �25�

n=1 m=1
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��y,r� =
1

2

lim

x→+0
�

−	

	

����b1 exp����x� − b2

�exp�− ���x��exp�i��r − y��d� �26�

In order to determine the possible singular behavior of Eq. �24�,
the behavior of the kernel ��y ,r� at y=r needs to be examined. It
can be seen from Eqs. �17� and �26� that as � approaches infinity,
the quantity I���=limx→+0�b1 exp����x�−b2 exp�−���x�� be-
comes I�	�=−�cy0 /cx0. By adding and subtracting the asymptotic
value I�	� to and from I��� in Eq. �26� and using the known result

lim
x→+0

�
0

	

� exp�− �x�cos���r − y��d� = −
1

�r − y�2 �27�

it can be shown that

��y,r� = ��y,r� +
1



�cy0

cx0

1

�r − y�2 �28�

where

��y,r� =
1

2

�

−	

	

�����cy0

cx0
− ���coth�������c��exp�i��r − y��d�

�29�

For r→y, Eq. �29� gives ��y ,r�=0.
To improve the convergence of the series sum in Eq. �25�, the

behavior of the kernel � as sn→	 can be examined. It can be
shown from Sec. 4.2 that as sn becomes sufficiently large, the
coefficients f1n are zero and the remaining coefficients f2n behave
like

f2n	�r� =



�0
exp�− sn�0r�, �0 =�cx0

cy0
�30�

in which the subscript 	 denotes the corresponding value as sn
becomes infinity. It can also be shown that as sn→	, �1 becomes
�0 and �2 becomes −�0. By adding and subtracting f2n	 to and
from f2n in Eq. �25�, and evaluating the series sum, we obtain

��y,r� =
1


c�n=1

	

sn��
m=1

2

exp�sn�my�fmn�r� − exp�− sn�0y�f2n	�r��
+




�0c2

exp�−



c
�0�y + r��

1 − exp�−



c
�0�y + r���2

�31�

The convergence of Eq. �31� is considerably better than Eq. �25�,
especially for edge cracks with large values of the crack spacing c
or small values of the strip thickness h.

6 Singular Integral Equation
Combining Eq. �28� with Eq. �24�, the crack face boundary

conditions �7� give the following integral equations for the auxil-
iary function g�r�:

� 1



�cy0

cx0
�

b

d
1

�r − y�2g�r�dr +�
b

d

H�y,r�g�r�dr�
= − cx0

−1e−�y�0
*�y,p� �32�

where �0
*�y , p� is the Laplace transform of �0�y�H�t� in Eq. �7a�,

and

H�y,r� = ��y,r� + ��y,r� �33�
is a bonded integral kernel in interval �b ,d�.
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Equation �32� is the desired singular integral equation for a row
of cracks in a FGM layer bonded to an elastic substrate. This
equation can be solved by expanding g�y� in terms of a Cheby-
shev polynomial series of the second kind �35�.

6.1 Internal Crack Solution. For the case of internal �em-
bedded� cracks, the integral equation �32� can be normalized be-
tween −1 and 1 with the substitutions

y = ȳa + �d + b�/2, r = r̄a + �d + b�/2 �34�

g�y� = aḡ�ȳ� �35�

where a= �d−b� /2 is the half crack length. The normalized inte-
gral equations in this case are

1



�cy0

cx0
�

−1

1
1

�r̄ − ȳ�2 ḡ�r̄�dr̄ + a2�
−1

1

H�y,r�ḡ�r̄�dr̄

= − cx0
−1e−�y�0

*�y,p� �36�

The solution of Eq. �36� can be expressed as �35�

ḡ�r̄� = ��
j=0

	

mjUj�r̄���1 − r̄2 �37�

where Uj�r̄�=sin��j+1�arccos�r̄�� /�1− r̄2 is the Chebyshev poly-
nomial of the second kind and mj are unknown coefficients. Direct
substitution of Eq. �37� into Eq. �36� and evaluation of the finite-
part integral given by

1



�

−1

1 �1 − r̄2Ui�r̄�
�r̄ − ȳ�2 dr̄ = − �i + 1�Ui�ȳ� �38�

result in

�
j=0

	

mj�−�cy0

cx0
�j + 1�Ui�ȳ� + a2�

−1

1

H�y,r�Uj�r̄��1 − r̄2dr̄�
= − cx0

−1e−�y�0
*�y,p� �39�

Equation �39� can be solved by simple collocation �35�, where the
roots of the Chebyshev polynomial are used as collocation points
for ȳ. Once mj are known, the full field solution is obtained.
Because of the antisymmetry of the problem, only mode III stress
intensity factor k3 exists at the crack tips. The values of k3 at the
crack tips are defined and obtained as

k3�b� = ��2
�b − y��y→b−0�xz�0,y�

= − �
a�cx0cy0e�b�
j=0

	

mjUj�− 1� �40a�

k3�d� = ��2
�y − d��y→d+0�xz�0,y� = − �
a�cx0cy0e�d�
j=0

	

mjUj�1�

�40b�

where the values of Uj at either end-point is

Ui�− 1� = �i + 1��− 1�i, Ui�1� = �i + 1� �41�

After determining the coefficients mj, the crack surface sliding
displacement g�y� on the upper surface of the cracks can be ob-
tained from Eqs. �37� and �35� as

g�y� = a��
j=0

	

mjUj�ȳ���1 − ȳ2 �42�

in which ȳ is related to y through Eq. �34�.

6.2 Edge Crack Solution. For the case of edge cracks, i.e.,

when b=0, the normalized integral equation has the form
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1



�cy0

cx0
�

0

1
1

�r̄ − ȳ�2 ḡ�r̄�dr̄ + d2�
0

1

H�y,r�ḡ�r̄�dr̄

= − cx0
−1e−�y�0

*�y,p� �43�
with:

y = ȳd, r = r̄d, g�y� = dḡ�ȳ� �44�

As in the case of internal cracks, the functions ḡk�r̄� can be ex-
pressed as Eq. �37�. The integral equation �43�, after being substi-
tuted with Eq. �37�, leads to the following equations for the evalu-
ation of the unknown coefficients mj:

�
j=0

	

mj�−
1



�cy0

cx0
�

0

1 �1 − r̄2

�r̄ − ȳ�2Uj�r̄�dr̄

+ d2�
0

1

H�y,r�Uj�r̄��1 − r̄2dr̄� = − cx0
−1e−�y�0

*�y,p�

�45�
The difference between the edge crack case and internal crack
case is that a closed-form expression for the finite-part integral in
Eq. �45� is not known. We can take advantage of the identity �38�
by rewriting Eq. �45� as

�
j=0

	

mj�−
1



�cy0

cx0
�

−1

1 �1 − r̄2

�r̄ − ȳ�2Uj�r̄�dr̄ + Qj�y��
= − cx0

−1e−�y�0
*�y,p� �46�

where

Qj�y� =
1



�cy0

cx0
�

−1

1 �1 − r̄2

�r̄ + ȳ�2Uj�− r̄�dr̄

+ d2�
0

1

H�y,r�Uj�r̄��1 − r̄2dr̄ �47�

and thus the algebraic system of equations for solution of the
unknown coefficients mj, if collocation is used, becomes

�
j=0

	

mj	−�cy0

cx0
�j + 1�Ui�ȳ� + Qj�y�
 = − cx0

−1e−�y�0
*�y,p�

�48�

Once the coefficients mj are known for the edge crack problem,
the stress intensity factor can be determined from Eq. �40b�, and
the displacement on the crack faces can be calculated from Eq.
�42� �replace a in Eqs. �40b� and �42� with d�.

After the solution in the Laplace transform domain is obtained,
the solution in time domain is obtained by the Laplace inversion
from the method of Miller and Guy �46�. To obtain the dynamic
solution more efficiently, an additional constraint is adopted here.
This additional constraint is that as t approaches infinity, the dy-
namic solution equals the corresponding static solution, which is
obtained from the model outlined above by setting the Laplace
transform parameter p to zero.

After obtaining the stress intensity factors in time domain, the
energy release rate at the crack tips y=b and y=d can be evalu-
ated from

G�b� =
1

2

1

cx0 exp��b�
k3

2�b� and G�d� =
1

2

1

cx0 exp��d�
k3

2�d�

�49�
respectively.

This section competes the crack tip field intensity factor solu-
tion. The stress in the cracked medium will be discussed subse-

quently.
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7 Stress in the Cracked Medium
A quantity of practical interest is the stress �xz�x ,y�, as it may

have an effect on further cracking. For simplicity, only the stress
at the plane x=c in the graded layer is given �we expect that the
overall stress is maximized there since it is furthest away from the
crack, which is a stress-free zone�. Substituting Eqs. �16� and �23�
into Eq. �11a�, the stress can be obtained as follows:

�xz
* �c,y,p� = cx0e�y�

b

d

��y,r�g�r�dr �50�

where

��y,r� = �a�y,r� + �b�y,r� �51�
with

�a�y,r� =
1

c2�
n=1

	

n�− 1�n�
m=1

2

exp�sn�my�fmn�r� �52a�

�b�y,r� =
1



�

−	

	

���
exp����c�

1 − exp�2���c�
exp�i��r − y��d�

�52b�
On the right-hand side of Eq. �51�, the first term is the contri-

bution due to the finite size of the medium, and the second term is
the contribution due to the finite spacing of the cracks. If the
medium is infinite �e.g., h�d and b�a� then �a=0.

The convergence of Eq. �52a� can be improved considerably by
adding and subtracting f2n	 in Eq. �30� to and from f2n, and evalu-
ating the infinite sum. As a result, we have

�a�y,r� =
1

c2�
n=1

	

n�− 1�n

���
m=1

2

exp�sn�my�fmn�r� − exp�− sn�0y�f2n	�r��
+




�0c2

exp�−



c
�0�y + r��

�1 + exp�−



c
�0�y + r���2

. �53�

As n increase, Eq. �53� converges faster than Eq. �52a�, especially
for edge cracks with large values of crack spacing c or small
values of layer thickness h.

It should be note that Eq. �50� would give the stress for the
perturbation problem solved under the conditions �4�–�7�. To ob-
tain the correct stress in the cracked medium, the solution of the
uncracked medium under prescribed external loads must be added
to that given by Eq. �50�.

8 Numerical Results
Since the surface crack problem is the only practical case,�39�

all results presented in this section are obtained for b=0 �see Fig.
1�. Since the main purpose of this paper is to explore the effect of
the crack spacing on the dynamic stress intensity factors �DSIFs�
and the static stress intensity factors �SSIFs�, the material system
considered here is an isotropic coating/substrate system. Denote
the shear moduli on the coating surface �y=0� and the coating/
substrate interface �y=h� as ��0� and ��h�, respectively. Because
the material property is a continuous function of y, the shear
modulus of the substrate would also be ��h�. For the graded coat-
ing the parameter � can be determined from

� =
1

log	��h�
 �54�

h ��0�
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8.1 A Single Graded Layer. We first consider a single graded
layer �which means there is no substrate attached to the graded
layer� subjected to a sudden antiplane shearing force �0 applied on
the crack faces. The crack length for this problem is fixed as d
=0.25h, where h is the thickness of the graded layer.

In Figs. 2–4 the normalized DSIFs are plotted against time for
selected values of crack spacing c. All the curves reach a peak and
then decrease in magnitude. The peaks are more pronounced if the
crack spacing is increased. Note that the curves for small crack
spacing reach the peaks those for larger crack spacing. This rep-
resents the disturbance of the waves reflected from the adjacent
crack faces. At sufficiently large time, the dynamic stress intensity
factor solutions are reduced to the corresponding static solutions.

In Fig. 5, the normalized peak and steady values of k3 are
plotted for different values of crack spacing and material nonho-
mogeneity. Obviously, the stress intensity factors are enhanced if
the graded layer has an increasing stiffness from its surface y=0
to surface y=h. Vice verse, this is if the stiffness of the graded
layer is a decreasing function of y then the stress intensity factor is
released. Most functionally graded materials are ceramic and
metal composites. The stiffness of the ceramic phase is usually
higher than that of the metal phase. Therefore, the metal and ce-
ramic FGMs have a potential to reduce both transient and static

Fig. 2 Normalized transient stress intensity factor for surface
cracks in a graded layer; k0=�0

��d, t0=h��0 /�0, �„h… /�„0…
=1/3, b=0, d=0.25h
Fig. 3 Same as Fig. 2; �„h… /�„0…=1
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stress intensity factors.
Further consideration of Fig. 5 shows that multiple cracking has

a great tendency to reduce the stress intensity factor. As crack
spacing becomes infinity, the present solution for a homogeneous
layer tends to the existing result k3=�0�2h tan�
a / �2h��
=1.027�0

�
a, which can be found from the handbook �e.g., �47��.
It is interesting to note that for c=0.5d �c=0.125h� the static stress
intensity factor for a homogeneous layer k3=0.5632�0

�
a; a
value that is only 55% of the stress intensity factor for infinity
crack spacing, which is k3=�0�2h tan�
a / �2h��=1.027�0

�
a.
Similar to the static solution, the peak values of the stress intensity
factors are also reduced considerably by multiple cracking.

Some examples for the stress �xz�c ,0� on the surface of the
graded layer calculated from Eq. �50� are shown in Figs. 6–8. The
corresponding peak values and steady values are displayed in
Figs. 9 and 10, respectively. Note that the stress is negative since
are applied crack face pressure loads are applied. Similar to the
DSIFs, the stresses show significant oscillation with time. In all
cases the peak and steady values of �xz�c ,0� are monotonously
decreasing functions of the crack spacing c /h and have the limit-
ing values of zero for c→	. Since the solutions are obtained for
the perturbation problem, results in Figs. 6–10 represent the

Fig. 4 Same as Fig. 2; �„h… /�„0…=3

Fig. 5 Normalized peak and steady values of the stress inten-
sity factor for surface cracks in a graded layer; k0=�0

��d, b

=0, d=0.25h
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stresses that the cracked medium can release. The corrected
stresses in the cracked medium should be obtained by adding
those in Figs. 6–10 to the corresponding solutions of the un-
cracked medium under prescribed external loads. Considering
such a fact, it is understood that the increasing crack density �or

Fig. 6 Normalized transient stress � at the point A: „x ,y…
= „c ,0… in a periodically cracked graded layer; t0=h��0 /�0,
�„h… /�„0…=1/3, b=0, d=0.25h

Fig. 7 Same as Fig. 6; �„h… /�„0…=1
Fig. 8 Same as Fig. 6; �„h… /�„0…=3
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decreasing crack spacing� has a significant effect to release the
overall stress in the cracked medium. An explanation for this can
be that a single crack would most seriously disturb the local stress
state, and the stress distribution in a system with more cracks is
smoother than a system with fewer cracks. As a result, both the
stress and the stress intensity factor are minimized by multiple
cracking.

8.2 A Coating/Substrate System. In this section a graded
coating/substrate system are investigated. The results for some
simplified cases are compared to the solutions available from the
literature. Since the crack is usually arrested at the interface, the
stress intensity factors and stresses are computed for d=h.

Graphically depicted in Figs. 11 and 12 are the values of k3�t�
and ��c ,0� with time for selected values of crack spacing. The
graded index is zero so that the entire medium is homogeneous.
The interpretation for the effects of time and crack spacing on k3
and ��c ,0� is similar to the case of the single graded layer. Since
the cracks considered here are longer than those in the single
graded layer, in each curve k3 and ��c ,0� take a longer time to
attain their peak and steady values. From our results, we find that
results for c=4d are almost identical to curves for c�4d. Hence,
the results for c=4d can be qualitatively considered as the single
crack solution. The curve for c=4d in Fig. 11 is in good agree-
ment with that by Sih for a single crack in a semi-infinite medium
�48�.

We have also obtained the solutions for various values of the

Fig. 9 Normalized peak values of the stress �xz at the point A:
„x ,y…= „c ,0… in a periodically cracked graded layer

Fig. 10 Normalized steady values of the stress �xz at the point

A: „x ,y…= „c ,0… in a periodically cracked graded layer
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material nonhomogeneity parameter � �or ��h� to ��0� ratio�. The
results are not given here since the effect of � on k3 and ��c ,0� in
the graded coating/substrate system is similar to that in the single
graded layer. A main conclusion from the results is that k3 de-
creases with decreasing �, and conversely, the magnitude of
��c ,0� decreases with increasing �. This suggests that in graded
coating applications, it is better that the coating has a higher stiff-
ness than the substrate �i.e., ��y� is a decreasing function of y�.

As mentioned above, the model developed in this paper is ap-
plicable to transient as well as steady problems. Table 1 gives the
stress intensity factors for a row of edge cracks in homogeneous
semi-infinite medium. The exact solution for this crack configu-
ration can be found from the handbook �e.g., �47�� and the results
are also listed in Table 1. It can be seen that the present solution
and the exact solution are completely identical.

9 Conclusion
A theoretical model is developed for the interactions of a row of

cracks periodically located in a functionally graded coating
bonded to a homogeneous substrate. To simplify the analysis, we
considered the antiplane mechanical loading. Such a problem is
important not only because a practical material may be subjected

Fig. 11 Normalized transient stress intensity factor for peri-
odic cracks in a coating/substrate system; k0=�0

��h, t0

=h��0 /�0, �„h… /�„0…=1, b=0, d=h

Fig. 12 Normalized transient stress at the point A: „x ,y…
= „c ,0… in a coating/substrate system; t0=h��0 /�0, �„h… /�„0…

=1, b=0, d=h

Journal of Applied Mechanics
to an antiplane mechanical deformation, but also because it can
provide a useful analogy to the most important in-plane crack-
dislocation problem.

Both transient solution and static solution are obtained. The
numerical Laplace inversion we used here ensures the transient
solution reduces to the corresponding static solution, when time
becomes infinity. The stresses and the stress intensity factors are
illustrated for different values of the nonhomogeneity parameter
as well as the crack spacing. The results show that both the stress
and stress intensity factor can be reduced significantly by increas-
ing crack density �decreasing crack spacing�.
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Variation in Fractal Properties
and Non-Gaussian Distributions
of Microcontact Between
Elastic-Plastic Rough Surfaces
With Mean Surface Separation
The fractal parameters (fractal dimension and topothesy), describing the contact behav-
ior of rough surface, were considered as constant in the earlier models. However, their
results are often significantly different from the experimental results. In the present study,
these two roughness parameters have been derived analytically as a function of the mean
separation first, then they are found with the aid of the experimental results. By equating
the structure functions developed in two different ways, the relationship among the scal-
ing coefficient in the power spectrum function, the fractal dimension, and topothesy of
asperity heights can be established. The variation of topothesy can be determined when
the fractal dimension and the scaling coefficient have been obtained from the experimen-
tal results of the number of contact spots and the power spectrum function at different
mean separations. The probability density function of asperity heights, achieved at a
different mean separation, was obtained from experimental results as a non-Gaussian
distribution; it is expressed as a function of the skewness and the kurtosis. The relation-
ship between skewness and mean separation can be established through the fitting of
experimental results by this non-Gaussian distribution. For a sufficiently small mean
separation, either the total load or the real contact area predicted by variable fractal
parameters, as well as non-Gaussian distribution, is greater than that predicted by con-
stant fractal parameters, as well as Gaussian distribution. The difference between these
two models is significantly enhanced as the mean separation becomes small.
�DOI: 10.1115/1.2061967�
1 Introduction
The contact between two rough surfaces has a strong influence

on the phenomena of friction, wear, and lubrication, as well as on
the conduction of heat and electricity. In general, the structure of
most surfaces appears to be random on a small scale. Statistical
parameters such as the root-mean-square �rms� of surface height
�, slope ��, and curvature �� are conventionally used to charac-
terize surface roughness �1,2�. Several theories based on these
parameters have been developed to model rough surfaces in con-
tact. The most popular of these is the Greenwood and Williamson
�GW� model �1�, which is based on the assumption that the sur-
face is composed of hemispherical asperities having equal radii
given by 1/��.

Nayak �3� considered rigid-plastic contact of two Gaussian
rough surfaces and noticed that the GW model is not applicable
for all microcontact sizes. McCool �4� took account of the inter-
action between two neighboring asperities and modeled the
elastic-plastic contact of isotropic and anisotropic solid bodies.
Chang et al. �the CEB model� �5� modified the original GW model
�1� to incorporate the effect of volume conservation when an as-
perity deforms plastically. Numerical results obtained from their
model are compared with existing models �1,6�. Kogut and Etsion
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�7� presented an elastic-plastic finite element solution for the con-
tact of a deformable sphere pressed by a rigid flat. Their solution
provides dimensionless expressions for contact load and contact
area covering a large range, from yielding inception to fully plas-
tic contact of the sphere. The finite element solution of Kogut and
Etsion �8� enabled a revision of the CEB model developed for
rough surface contacts and showed substantial differences in con-
trast with solutions of the CEB model. The microcontact model
which was developed by Kogut and Etsion �7� is adopted in the
present study to obtain the contact area, contact load, and contact
pressure of an asperity.

The power spectra of engineering surfaces produced by random
processes have been observed to follow inverse power laws over a
wide range of the length scale �9–11�. Microscopic observations
have shown that engineering surfaces can be characterized by
fractals, from the nanometer to the millimeter scale �10–12�. The
assumption of a surface being composed of hemispherical asperi-
ties belonging to a single length scale is an oversimplification of
the real surface, which contains several roughness scales. Majum-
dar and Bhushan �13� and Bhushan and Majumdar �14� imposed
scale-independent parameters �fractal dimension D�, instead of
employing conventional statistical parameters, to describe the load
contact of rough surfaces.

A power law size distribution of contact spots, resulting from a
geomorphology fractal model, calculated the real contact area.
Zhou et al. �15� developed a fractal geometry model, which pre-
dicts the wear rate in terms of the fractal dimension and topothesy.
It should be mentioned that they had found the fractal dimension
changing with the wear process. A new fractal-based functional

model for anisotropic rough surface, developed by Blackmore and
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Zhou �16�, was devised to test two methods for the approximate
computation of the fractal dimension �D� of surfaces �2�D�3�.
A general distribution function for the heights of an anisotropic
engineering surface has been derived by Blackmore and Zhou
�17�. The two-dimensional method for determining G and D was
extended by Zahouani et al. �18� to three-dimensional measure-
ments of rough surfaces. A two variable fractal surface description
was also incorporated in a three-dimensional elastic-plastic con-
tact mechanics analysis by Yan and Komvopoulos �19�. The frac-
tal surface descriptions developed by Yan and Komvopoulos �19�
are helpful to describe the interference and the radius of curvature
of a spherical asperity in the present study.

The power law model was developed for the number N by
Mandelbrot �20� to deal with the cumulative distribution of is-
lands on the earth’s relief, where D is the fractal dimension of its
coastline. The study of Chung and Lin �21� considers develop-
ments of the size distribution functions, n�a��, for elastic, elasto-
plastic, and fully plastic deformation. They are used to evaluate
the number N of contact spots with an area larger than an area of
a� in per unit apparent area, rather than using the power law
model commonly adopted in several other studies �13,14,19,22�.
Nevertheless, all of these studies related to the fractal theory as-
sumed that fractal dimension and the topothesy are invariant with
mean separation, and the probability density function is assumed
to be the Gaussian distribution except in the studies of Blackmore
and Zhou �16,17�. These two studies have obtained a non-
Gaussian distribution for anisotropic rough surfaces; the results
show good agreement between theory and experiment.

The fractal parameters �fractal dimension and topothesy�, de-
scribing the contact of rough surface, were always considered as
constant in the earlier models �13,14,19,22�. The behavior pre-
dicted by the assumption of constant fractal parameters is signifi-
cantly different from the experimental results. Instead of consid-
ering the fractal dimension D and topothesy G as two invariants in
the fractal analysis of asperity heights, these two roughness pa-
rameters are varied by differing the mean separation in the present
study. The probability density function of asperity heights,
achieved at different mean separations, was identified by the ex-
perimental results to be a non-Gaussian distribution �23�; it is
expressed as a function of the skewness and the kurtosis of sur-
face asperities. The objective of this study is to establish the rela-
tionships among these fractal parameters and investigate the effect
of these variable fractal parameters on the contact behavior. The
solutions are obtained by the following assumptions: �a� the ge-
ometry of an asperity tip is assumed to be spherical; �b� the ma-
terial of all asperities is assumed to have the elastic-perfectly plas-
tic behavior in either tension or compression. The von Mises
yielding criterion was used to detect the local transition from elas-
tic to plastic deformation.

The results shown in the experimental study of Othmani and
Kaminsky �23�, which provide the fractal dimension data varying
with the mean separation, are exhibited in this study as the ex-

Fig. 1 The schematic diagram of t
ample to illustrate the variable behavior of the fractal dimension
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D, the topothesy G, and the scaling coefficient Cp. By equating
the structure functions developed in two different ways, the rela-
tionship among Cp, D, and G is thus established. However, the
variations of either Cp or G with the mean separation are still not
available in the experimental study �23�. A relationship between
Cp and G has to be found from the G-D-Cp diagram by connect-
ing the intersection points of constant-G curves and constant-Cp
curves. The topographies of a surface obtained from the experi-
mental results at different separations �23� show the probability
density function g to be no longer a Gaussian distribution. This
non-Gaussian probability density function has been expressed as a
function of the skewness Sk and the kurtosis Kt. The relationship
between the skewness and the mean separation is thus established
if the experimental results �23� can be fitted by the probability
density function g. The relationship between fractal dimension
and skewness is thus obtained by means of the relationship devel-
oped between the fractal dimension and the mean separation. The
results obtained by assuming constant D and G as well as the
Gaussian distribution are compared with those obtained by vari-
able D and G as well as the non-Gaussin distribution.

2 Theoretical Analysis for Contact Surfaces
The contact of two rough surfaces �see Fig. 1� can be modeled

by a flat and smooth surface in contact with a rough surface. If the
mean radii of curvature of the asperities on surface 1 and surface
2 are R1 and R2, respectively, the equivalent rough surface can be
expressed as having the radius of curvature, R, satisfying 1/R
=1/R1+1/R2. If �1 and �2 denote the standard deviations of the
surface roughness of surface 1 and surface 2, respectively. The
standard deviation, �, for this equivalent rough surface satisfies
�=��1

2+�2
2.

2.1 Contact of Elastic and Fully Plastic Deformations. Ac-
cording to Hertz theory, the elastic contact area, ae, the elastic
contact load, Fe, and the average contact pressure, Pe, produced
by a sphere with a radius of R in contact with a flat, smooth plate
with an elastic interference, �, are given as �24�

ae = �R� �1�

Fe = 4
3ER1/2�3/2 �2�

Pe =
4

3

E

�
� �

R
�1/2

�3�

where E denotes the effective Young’s modulus of two solid con-
tact surfaces �surface 1 and surface 2� with the Young’s modului,
E1 and E2, and the Poisson ratios, �1 and �2, respectively. It is
stated as

1
=

1 − �1
2

+
1 − �2

2

contact surface with deformation
E E1 E2
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In the fully plastic deformation regime, the asperity’s contact
area, ap, the contact load, Fp, and the average contact pressure,
Pp, can be expressed as �24�

ap = 2�R� �4�

Fp = H · ap �5�

Pp = H �6�

2.2 The Critical Interference and Contact of Elastoplastic
Deformation. The critical interference, �c, that marks the transi-
tion from the elastic deformation to the elastoplastic deformation
�i.e., the yielding inception� is given as �5,7,8,12,19�

�c = ��KH

2E
�2

R �7�

where H denotes the hardness of the softer material and its rela-
tionship with the yield strength �Y� is generally expressed by H
=CY. C=2.8 �25� is valid only for a small region of indentations;
this C value is brought down by large indentations due to the
softening effect formed at large deformations, and the hardness
coefficient K is related to the Poisson ratio of the softer material
�5,7,8�

K = 0.454 + 0.41� �8�
From the results provided by Mesarovic and Fleck �26� for a

half-space indention, the depth generated by a rigid sphere is deep
into the fully plastic deformation regime. The plastic deformation
in response to this depth is characterized by two parameters: a
yielding strength and a non-dimensional strain-hardening expo-
nent. The results reveal that the normalized contact radius and the
average contact pressure of an asperity can be obtained as func-
tions of the normalized indentation depth and the strain-hardening
exponent. The elastic-plastic finite element model developed by
Kogut and Etsion �7� for the frictionless contact of a deformable
sphere pressed by a rigid flat plate is adopted in the present work.
In their study, the sphere is assumed to be an elastic-perfectly
plastic material with an identical behavior in tension and compres-
sion. The validity of the dimensionless contact pressure, P /Y �P:
contact pressure�, was tested by solving the problem for several
different material properties �100�E /Y �1000, �=0.3� and
sphere radii �0.1 mm�R�10 mm�. The dimensionless results of
contact load, contact area, and P /Y versus the dimensionless in-
terference, � /�c, are always the same regardless of the selection of
material properties and sphere radius. From the results provided
by Kogut and Etsion �7�, they showed that the normalized contact
area and the average contact pressure can be expressed by curve-
fitting as a function of the dimensionless interference only. This
model can be easily modified to accommodate the strain harden-
ing effect, it is, however, applied in the present study simply for
the purpose of comparing the results with that of the earlier
studies.

Kogut and Etsion �7� used the finite element method to solve
the microcontact problem of a single asperity, and found that the
elastoplastic regime extends over the dimensionless interference
values in a range of 1�� /�c�110, with a distinct transition in
the contact behavior at � /�c=6. In a range that 1�� /�c�6, a
plastic region develops beneath the contact surface, while the en-
tire contact area is in the elastic deformation. In a range that
� /�c�6, the contact area contains an inner elastic circular core
surrounded by an external plastic annulus. This elastic core
shrinks with increasing interference and finally disappears com-
pletely at � /�c=68. Thereafter, the entire contact area is in the
plastic deformation, but the average contact pressure continues to
rise until it becomes a constant value equal to the material hard-
ness as � /�c=110, which marks the beginning of the fully plastic
deformation.
The dependence of the asperity’s contact area, aep, the contact
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load, Fep, and the average contact pressure, Pep, in the elastoplas-
tic deformation regime were presented by Kogut and Etsion �7� in
a dimensionless form as

aep

�R�c
= a1� �

�c
�b1

�9�

Fep

2/3KH�R�c
= a2� �

�c
�b2

�10�

Pep

H/2.8
= a3� �

�c
�b3

�11�

where the coefficients, a1–a3, and the exponents, b1–b3, for the
first and second elastoplastic regimes were given in this study �7�.

2.3 Contact Loads of Elastic, Elastoplastic, and Fully Plas-
tic Deformations in the Fractal Model. Yan and Komvopoulos
�19� used a modified two-variable Weierstrass-Mandelbrot func-
tion, z�x ,y�, to characterize the rough surface geometry. To obtain
the deformation force at a microcontact of given size, its interfer-
ence with the opposing rigid smooth flat must be determined first.
They assumed spherical asperity microcontacts to be the isotropic
distribution and derived a single-variable equivalent relationship
for the surface represented by

z�x� = L�G/L��D−2��ln ��1/2�
n=0

nmax

��D−3�ncos 	 − cos�2��nx/L − 	� ,

where D�2�D�3� denotes the fractal dimension of the surface
�19�; G denotes the topothesy which is a height scaling parameter
independent of the frequency of the wave form shown in asperity
heights; L is the sample length; � represents a parameter that
determines the density of frequency shown in the surface asperi-
ties, it was chosen to be 1.5; and 	 is a random phase which is
used to prevent the coincidence of different frequencies at any
point of the surface profile. Since the expression of z�x� is still a
series of cosine functions, a profile consisting of smaller asperities
residing on the top of larger asperities is produced. For an asperity
with its truncated microcontact radius r�, the longest wavelength
in the asperity wave form is 2r�. It is reasonable to assume that
the microcontact force is principally due to the deformation of an
asperity with the base wavelength, and the corresponding fre-
quency index n, where n=ln�L /2r�� / ln � �19�. Therefore, �n

=L /2r�, The substitution of �n into this z�x� expression allows the
z�x� function to be reduced to z0�x� which can be expressed as
�19�: z0�x�=G�D−2��ln ��1/2�2r���3−D��cos 	−cos��x /r�−	��. The
interference of a spherical asperity, �, is determined by the z0�x�
function and it is equal to the peak-to-valley amplitude of the
z0�x� function. For a given contact spot with an area �a�
=�r�2� , � is given as �19�

� = 2�4−D�G�D−2��ln ��1/2��D−3�/2a��3−D�/2 �12a�

The radius of curvature, R, for the circular contact spot is thus
obtained by R=−�1+ �dz0 /dx�2�1/2�d2z0 /dx2�−1 �27�. The r� value
in the z0�x� expression can be determined by the expression that
r�= ���R−���1/2 �27�. By the relationship that a�=�r�2; the effec-
tive radius of curvature of an asperity, R, is thus obtained as

R =
2�D−4�G�2−D�a�

�D−1�/2

��D−1�/2�ln ��1/2 �12b�

The dimensionless topothesy, Ḡ, and the dimensionless contact
area, a�, through normalizing of the relevant parameter by the
standard deviation of surface height, �, can be expressed as

¯
G 	 G/�
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a� 	 a�/�2

then, the dimensionless interference, �̄��̄	� /��, and the dimen-

sionless effective radius of curvature, R̄�R̄	R /��, can be ex-
pressed as

�̄ = 2�4−D�Ḡ�D−2��ln ��1/2��D−3�/2a��3−D�/2 �13a�

R̄ =
2�D−4�Ḡ�2−D�a��D−1�/2

��D−1�/2�ln ��1/2 �13b�

Substitutions of Eqs. �13a� and �13b� into two sides of Eq. �7�,
and subsequent simplification, give

āc = 
2�10−2D���D−4�Ḡ�2D−4��ln ��� E

KH
�2�1/�D−2�

�14�

here, āc is the dimensionless critical contact area corresponding to
the inception of the elastoplastic deformation. Asperities are elas-
tically deformed as ���c. The substitutions of Eq. �13a� and Eq.
�7� into the above mentioned inequality yields a�
ac. When as-
perities are deformed, such as ���c, they are in the elastoplastic
deformation; even in the fully plastic deformation, the result of
a��ac is obtained. The same conclusion has also been drawn in
several other studies �13,19,22�.

By substituting Eqs. �13a� and �13b� into Eqs. �2�, �5�, and �10�,
respectively, the dimensionless contact load of an asperity for
elastic, elastoplastic, and fully plastic deformations in fractal form
can be obtained as follows.

�a� For the elastic deformation �� /�c�1�

F̄e 	 Fe/�E · �2� = 1
3 · 2�6−D���D−4�/2�ln ��1/2Ḡ�D−2�a��4−D�/2

�15�
�b� For the first elastoplastic deformation �1�� /�c�6�

F̄ep1 	 Fep1/�E · �2�

= 1.2377 · �KH

E
�0.144

2−0.85D+3.4Ḡ0.85D−1.7

��ln ��0.425�0.425D−1.7a��−0.425D+1.85� �16a�

For the second elastoplastic deformation �6�� /�c

�110�

F̄ep2 	 Fep2/�E · �2�

= 1.3439 · �KH

E
�0.474

2−0.526D+2.104Ḡ0.526D−1.052

��ln ��0.263�0.263D−1.052a��−0.263D+1.526� �16b�
�c� For the fully plastic deformation �110�� /�c�

F̄p = �H · a��/�E · �2� = �H/E� · a� �17�

2.4 Relationship between Fractal Dimension and Mean
Separation. In the present study, the variations of G and D with

mean separation, d̄, of two contact surfaces can be obtained. For a
fractal surface, the number �N�a��� of contact spots with area
larger than a� follows the power law relation in the form �21�

N�a�� � B · a��1−D�/2 �18�

If the N�a��−a� plot in the log-log form can be obtained from the
experimental results of N�a�� and a�, the slope of an N�a��−a�
curve is equal to �1−D� /2. Then, the fractal dimension D can be
determined if the slope is available. As Fig. 2 shows, all
N�a�� /Aa−a� curves involved experimental data obtained at dif-

¯
ferent separations �23�. The fractal dimension for each d can then
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be determined. Define d̄ as the dimensionless mean separation.
The empirical expression obtained from the curve fitting of the D
data is expressed as

D = y1 + A1e�−d̄/t1� �19�

where y1=3.0, A1=−0.52395, and t1=0.47258. The curve is
shown in Fig. 3.

2.5 Relationship among Topothesy, Fractal Dimension,
and Scaling Constant. The relationship among topothesy, G,
fractal dimension, D, and scaling constant, Cp, needs to be de-
rived. In the study of Yan and Komvopoulos �19�, the structure
function, S, of a surface with surface asperities is expressed as

S��� = 22�4−D�G2�D−2��ln �����2�3−D� �20�

where � denotes the resolution of an instrument applied to mea-
sure the surface heights of points separated by a distance, �. The
structure function can also be obtained from the power spectrum
function, P��, of surface asperities. This function is written as
�28�

Fig. 2 The experimental results of N„a�… /Aa shown in the
study of Othmani and Kaminsky †23‡ as a function of the con-
tact spot area a�. The solid curves are applied to fit the experi-
mental data by adjusting the slope value.

Fig. 3 The fractal dimensions varying with the dimensionless
mean separation. These data of D are obtained from the slope

values of the four curves shown in Fig. 2.
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P�� =
Cp

� �21�

where =1/� and � denotes the exponent value of . Cp is a
scaling constant which depends on the amplitude of surface
roughness. The structure function corresponding to this power
spectrum is given as �28�

S��� =
−�

�

P���exp�i�� − 1�d =
2Cp

� − 1
sin��

2
�2 − �����2 − ��

�����−1 �22�

Equating Eqs. �20� and �22� gives the exponent value of �, satis-
fying �−1=6−2D; therefore, �=7−2D. Substituting �=7−2D
into Eq. �22� produces the structure function as

S��� =
Cp

3 − D
sin��

2
�2D − 5����2D − 5��2�3−D� �23�

Here, � denotes the gamma function. Equating the coefficients of
�, shown in Eqs. �20� and �23�, yields the Cp parameter as

Cp =
�3 − D�22�4−D�G2�D−2�ln �

sin���2D − 5�
2

���2D − 5�
�24�

Equation �24� can also be rewritten as

G = �Cp · sin���2D − 5�
2

���2D − 5�

�3 − D�22�4−D�ln �
�

1/�2D−4�

�25�

In either Eq. �24� or Eq. �25�, three parameters, D, G, and Cp,
can be uniquely determined, but only when any two of these pa-
rameters are available. As Eq. �21� shows, the power spectrum
P��, as a function of frequency , can be determined by mea-
suring surface topographies achieved at different mean separations
of two contact surfaces. The logarithmic form of Eq. �21� gives
log P��=log Cp+� · log . Cp is thus the intersection of this
straight line with the log P�� coordinate, when the experimental
data are revealed in the log P��−log  plot. As to the fractal
dimension, D, a three-dimensional surface profile yields its value,
varying in the range of 2 to 3. In the present study, the variations
of G with D in this range can therefore be determined in Eq. �25�,
if the Cp parameter is obtained directly from surface roughness
measurements.

In order to satisfy Eq. �25�, there exists a manipulating region
suitable for parameters, G and Cp, when the fractal dimension D
is varied from 2 to 3. As Fig. 4 shows, the upper boundary of this
region is denoted by line 1 having a constant G value. This con-
stant value is the original topothesy of the profile before incurring
any contact deformation. The lower boundary of this region is
denoted by curve 3. This curve is determined as follows: substi-
tuting the initial values of D and G for a surface before surface
contacts into Eq. �24� obtains the Cp value. This Cp value is de-
noted by �Cp�initial, as shown in Fig. 4. Then, curve 3 is obtained
by fixing the �Cp�initial value, but changing the fractal dimension.
The real contact behavior arising at different mean separation
must be within the region laying between line 1 and curve 3.
However, this activity does not suggest that contact behavior can
follow any arbitrary relationship within this region. The choice of
the G-Cp relationship must satisfy the necessary condition that the
G parameter is lowered by decreasing the fractal dimension �D� in
order to conform to the reality of contact behavior.

Due to the lack of Cp data in the experimental study of Othmani
and Kaminsky �23�, curve 2�a�-curve 2�c� in Fig. 4, are shown as
three examples. The prerequisite validity of these three curves will
be illustrated in the “Results and Discussion” section. The evalu-

ation about the effect of variable G, D, and Cp on the tribological
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behavior is now on the base of curves 2�a�–2�c�. Theoretically, a
genuine curve 2 should be determined by the measurements of
surface topography.

2.6 Size Distributions at Elastic, Elastoplastic, and Fully
Plastic Deformations. In the present study, all parameters with a
bar above them are now defined to be dimensionless. Define ā1

	�� 1
110

�1/�D−2�� · āc and ā2	�� 1
6

�1/�D−2�� · āc. If the size distribution
parameter, n�a��, of asperities at each of the elastic, elastoplastic,
and fully plastic deformation regimes is available, the real contact
area of a surface in the dimensionless form �Ar=Ar /�2� can be
expressed as

Ār = Āe + Āep1
+ Āep2

+ Āp

=
ac

aL

ne�a��a�da� +
ā2

ac

nep1�a��a�da�

+
ā1

ā2

nep2�a��a�da� +
o

ā1

np�a��a�da� �26�

where nep1 and nep2 represent the size distribution function in the
first and second elastoplastic regimes, respectively. The size dis-
tribution functions in the three deformation regimes, ne�a��,
nep1�a��, nep2�a��, and np�a�� can be determined if the real contact
area, Ar in Eq. �26�, can be obtained in another way. If the prob-
ability density function of asperity heights, g�z̄�, is known, the
asymptotic expression of the real contact area, developed by Bush
et al. �29�, can be expressed as

Ar =
� · �

�2 + �2Aa�
d̄

�d̄+�̄c�
g�z̄�dz̄ +

�d̄+�̄c�

�d̄+6�̄c�
g�z̄�dz̄

+
�d̄+6�̄c�

�d̄+110�̄c�
g�z̄�dz̄ +

�d̄+110�̄c�

�

g�z̄�dz̄� �27�

where

�̄c = �c/�

z̄ = z/�

� = � �m2�min�1/2

Fig. 4 Determination of the region satisfying Eq. „25…. The tri-
bological behavior in the present study is analyzed according
to curve 2„a…-curve 2„c….
�m2�max
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� =
0.4777�

1 − 1.3211�

and where the m2 parameter is known as the second spectral mo-
ment of a profile. It gives

m2 = E��dz/dx�2�

where z�x� is a surface profile varying in an arbitrary direction, x,
and E� � denotes a statistical expectation. The direction in which
m2 has a maximum value is known as the principal direction.
Then, m2�0�= �m2�max=m20 and m2�� /2�= �m2�min=m02. The �
parameter in the present analysis is assumed to be a fixed value.

In Eq. �26�, a dummy variable should be used to express the
first integral as

Āe�a�� =
a�

āL

ne��̄��̄d�̄ ,

where a� is treated as the variable lower limit of integration. Then
the fundamental theorem of calculus yields

dĀe

da�
= − ne�a��a�

therefore,

ne�a�� = −
1

a�

dĀe

da�
.

Appling the chain rule to this, one obtains

ne�a�� = −
1

a�

dAe

da�
= −

1

a�

dAe

dz̄

dz̄

da�

From Fig. 1, z̄= �̄+ d̄, whence dz̄ /da�=d�̄ /da�, so the above-noted
formula yields

ne�a�� = −
1

a�

dAe

dz̄

d�̄

da�
�28�

In Eq. �27�, a dummy variable should also be used to express
the first integral as

Āe�z̄� =
� · �

�2 + �2Aa
z̄

d̄+�̄c

g���d� ,

with z̄ as the lower limit of integration. Applying the fundamental
theorem of calculus to the above equation, one obtains

� dĀe

dz̄
�

d̄

= −
� · �

�2 + �2Aa · g�d̄� �29�

The area derivative of the deformation parameter ��̄� shown in Eq.
�13a� with respect to the contact area a� is expressed as

d�̄

da�
= 
3 − D

2
�24−DḠ�D−2��ln ��1/2��D−3�/2a��1−D�/2 �30�

where Ḡ=G/�. Substituting Eqs. �29� and �30� into Eq. �28� gives

ne�a�� =
� · �

�2 + �2Aa · g�d̄�
3 − D

2
�24−DḠ�D−2�

��ln ��1/2��D−3�/2a��−1−D�/2 �31�

The number of contact spots �N� in the elastic deformation region,
whose area is larger than the contact spot area a�, takes N�a��
=�

a�
āLne�a��da�. The size distribution function, nep1�a��, for the

first elastoplastic regime, nep2�a�� for the second elastoplastic re-
gime, and np�a�� for the fully plastic regime are shown in Appen-

dix.
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2.7 Non-Gaussian Probability Density Function Varying
With Mean Separation. The topographies of a surface obtained
from surface contacts at different separations are generally no
longer the Gaussian distribution, and the probability density func-
tion of surface asperities varies with the mean separation of two
surfaces. According to the experimental results shown in the study
of Othmani and Kaminsky �23�, surface asperities, after experi-
encing contacts of different separations, were found to be satisfied
by a non-Gaussian probability density function.

The equation for the non-Gaussian probability density function,
g�z̄�, can be expressed as �30�

g�z̄� = ye�1 + z̄/B1�m1�1 − z̄/B2�m2, �− B1 � z̄ � B2� �32�

In Eq. �32�, m1 ,m2 ,B1 ,B2 are obtained by solving �30�

�m1 + 1�/B1 = �m2 + 1�/B2 �33�

B1 + B2 = 1
2 �Sk2�r + 2�2 + 16�r + 1��1/2 �34�

where Sk in Eq. �34� denotes the skewness, the measure of the
asymmetry of the profile about the mean line; and r is written as
�30�

r =
6�Kt − Sk2 − 1�

�6 + 3Sk2 − 2Kt�
�35�

where Kt in Eq. �35� represents a measure of the sharpness of the
surface profile. The m1 and m2 values are given by �30�

m1 =
1

2
�r − 2 − r�r + 2�� Sk2

Sk2�r + 2�2 + 16�r + 1��
1/2�

�36a�

m2 =
1

2
�r − 2 + r�r + 2�� Sk2

Sk2�r + 2�2 + 16�r + 1��
1/2�

�36b�
and

ye =
1

B1 + B2

�m1 + 1�m1�m2 + 1�m2

�m1 + m2 + 2�m1+m2

��m1 + m2 + 2�
��m1 + 1���m2 + 1�

�37�

where � is the gamma function. Once Sk and Kt are obtained, the
non-Gaussian probability density function, g�z̄�, is determined.
The kurtosis, Kt, is generally fixed to be 3 �30�, and the skewness,
Sk, is derived by adjusting its value so that the curve predicted by
Eq. �32� shows good agreement with the experimental results.

Fig. 5 Probability density functions of asperity heights †23‡
Figure 5 indicates the solid curves predicted by Eq. �32� at differ-
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ent skewness values. The experimental results corresponding to
these Sk values are noted by different symbols.

From the preceding experimental results, surface skewness
changes are shown to be dependent upon different dimensionless

mean separation, d̄. The point data in Fig. 6 show the variation of

surface skewness with d̄ for the experimental results in Fig. 5. No
single expression fits all these points accurately. Therefore, in the
present study two skewness expressions are needed to describe the

behavior exhibited in the two subregions of d̄. The empirical ex-

pression for d̄
2 is given as

Sk = y2 + A2 · e�−d̄/t2� �38�

where y2=−0.1780, A2=−3.93752, and t2=0.5757. The expres-

sion for d̄�2 is given as

Sk = C1 + C2 · d̄ + C3 · d̄2 �39�

where C1=−0.8486, C2=0.0286, and C3=0.1227. Then the real
contact area, Ar, shown in Eq. �27�, can be rewritten as

Ar =
� · �

�2 + �2Aa ·
d̄

�

g�z̄�dz̄ �40�

The equivalence between Eqs. �26� and �40� is established first;

then, the substitution of the g�d̄� expression, shown in Eq. �32�,
into the resulting equivalence allows us to obtain the largest con-
tact area �aL� of an asperity among all real contact spot areas.

The total load, Ft, acting on an apparent surface, can be evalu-
ated by the size distribution of contact spots. If the largest contact
spot area is larger than the critical area, i.e., aL
ac, the dimen-
sionless total load �Ft	Ft / �E ·�2�� is expressed as

Ft =
āc

āL

Fe · ne�a�� · da� +
ā2

āc

F̄ep1 · nep1�a�� · da�

+
ā1

ā2

F̄ep2 · nep2�a�� · da� +
0

ā1

Fp · np�a�� · da� �41�

2.8 Relationship Between Fractal Dimension and

Skewness. The dimensionless mean separation, d̄, shown in Eqs.

Fig. 6 Variations of the skewness parameter with the dimen-
sionless mean separation. These skewness data are obtained
from the fittings shown in Fig. 5.
�19�, �38�, and �39�, reveals that the relationship between the frac-
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tal dimension D and the skewness Sk can be established. There
exist two cases for the dimensionless mean separation. In the case

that d̄
2, Eq. �19� gives

D = y1 + A1e�−d̄/t1� = y1 + A1e�−d̄/t2��t2/t1� = y1 + A1 · �e�−d̄/t2���t2/t1�

�42�

By the use of Eq. �38�, Eq. �42� can be rewritten as

D = y1 + A1 · 
Sk − y2

A2
��t2/t1�

�43�

In the case that d̄�2, Eq. �39� can be rewritten as

C3 · d̄2 + C2 · d̄ + �C1 − Sk� = 0 �44�

Since d̄ is a positive value, the d̄ solution of Eq. �44� is obtained
as

d̄ =
− C2 + �C2

2 − 4C3�C1 − Sk�
2C3

=
− 0.0286 + �0.00081796 − 0.4908�− 0.8486 − Sk�

0.2454
�45�

Since d̄ is expressed as a function of the skewness, the relation-
ship between fractal dimension, D, and skewness, Sk, can be es-

tablished by substituting the d̄ expression shown in Eq. �45� to the
D expression shown in Eq. �19�. Final conclusions drawn from the
present analysis are that the fractal dimension D can be obtained

from Eq. �19� by giving a d̄ value; this D value can be used to
obtain G from Eq. �25�, if Cp is given as a constant value. For the

case that d̄
2, Eq. �43� is directly applied to solve Sk, if D is

known; whereas, for the case that d̄�2, Eqs. �19� and �45� are
combined to obtain Sk, if D is known.

3 Results and Discussion
In the present study, the fractal theory developed in previous

studies �13,19� analyzing the contact of rough surfaces is adopted
here to study microcontact behavior exhibited at different mean
separations. Instead of considering the fractal dimension D and
topothesy G as invariants at various mean separations �d�, these
two roughness parameters are actually varied with the mean sepa-
ration. The solid curves shown in Fig. 2 present theoretical results
predicted by the different fractal dimensions in Eq. �18�; each of
these curves shows fairly good fitting with the experimental data
�23�. Then, the slope of each curve is determined. Mean separa-
tion data have been provided in the experimental study of Oth-
mani and Kaminsky �23�. The slopes of these curves involve
negative values; they become steep as the mean separation be-
tween two contact surfaces is increased. Figure 3 shows the varia-
tion of fractal dimension with the mean separation for experimen-
tal results shown in Fig. 2. The fractal dimension for the cases of
large separation is 3; it is decreased as the mean separation is
reduced. The fractal dimension corresponding to zero separation is
lowered to about 2.475.

In Fig. 4, the intersection point �a� of line 1 and curve 3 indi-
cates the surface state, before it experiences any asperity interfer-
ence. These intersection points of constant-G and constant-Cp
curves show the values of G, D, and Cp satisfying Eq. �25�. With
the aid of Fig. 3, curves 2�a�–2�c� in Fig. 4 are here obtained by
connecting part of these intersection points so that the G param-
eter is always lowered by decreasing the fractal dimension. The
topothesies of these three curves satisfy: �G�2�a�
 �G�2�b�

 �G�2�c�. These specific curves may not conform precisely to real

G-Cp behavior for the material used in the experimental study of
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Othmani and Kaminsky �23�; however, these three curves can
provide us with information about the influence of variable G, D,
and Cp on tribological behavior.

The topographies of a surface obtained from surface contacts at
different separations generally do not follow the Gaussian distri-
bution; the non-Gasussian density function was formulated in the
Kotwal and Bhushan study �30� as a function of the skewness �Sk�
and the kurtosis �Kt�. In this study, a given mean separation �d� is
sufficient to determine the fractal dimension, the topothesy, and
the skewness. Figure 5 shows the variations of the probability
density function g�z̄� under four different surface loads �unit:
N/mm2�. The skewnesses of these solid curves are all negative
values; their absolute values are increased by increasing the sur-
face load. Figure 6 shows the variations of the skewness with the

mean separation d̄. The skewness parameter becomes more nega-
tive as the mean separation is reduced.

The combination of the D-d̄ relationship, shown in Fig. 3, and

the Sk-d̄ relationship, shown in Fig. 6, reveals the Sk-D relation-
ship in Fig. 7. For the fractal dimension in the region smaller than
2.8, the skewness of surface asperities is almost invariant with D.
However, a further increase in the fractal dimension causes a sig-
nificant lowering of skewness in the absolute value, especially for
the fractal dimension close to 3.0.

The probability density function g�z̄� of surface asperities is
usually assumed to be a Gaussian distribution, and D and G re-
main invariant with changing mean separation. However, experi-
mental results in Othmani and Kaminsky �23� reveal that g�z̄�
actually varies with mean separation, and D and G are no longer
taken to be invariant. Figure 8 shows the dimensionless total loads
predicted by these two models from different viewpoints. In the
case of variable G and D and non-Gaussian g�z̄�, the relationship
among G, D, and Cp obeys the behavior of curve 2 in Fig. 4;
whereas g�z̄� obtained from the experimental results, shown in
Fig. 5, is applied to obtain theoretical solutions in the present

study. In the region of d̄ smaller than about 2.0, the total load
predicted by a non-Gaussian g�z̄� is higher than that predicted by
a Gaussian g�z̄�. The difference in the total load is enhanced by
decreasing the mean separation.

Conversely, the total load predicted by a non-Gaussian g�z̄� is

lower than that predicted by a Gaussian g�z̄�, if d̄ is greater than
about 2. The existence of the Ft / �E ·Aa� difference between these
two models, for a mean separation greater than about 2, is not

Fig. 7 Variations of the skewness parameter with the fractal
dimension. They are established using Figs. 3 and 6.
actually correct. This difference should be narrowed to be negli-

150 / Vol. 73, JANUARY 2006
gibly small as the mean separation d̄ is increased to larger values.
The interpretation of this error can be given by the probability
density curves shown in Fig. 5 for Sk=0 �Gaussian� and Sk
=−0.18. From an investigation of Fig. 6, the skewness �Sk� varies

roughly in the range of −0.3 to −0.18, if the mean separation �d̄�
is greater than 2.0. Therefore, differences in Ft / �E ·Aa�, shown in

Fig. 8, for d̄�2 are only pertinent to the probability density pro-
files with Sk=0 �Gaussian� and Sk=−0.18. As Sk=−0.18, Fig. 6
shows the dimensionless mean separation corresponding to this Sk
value is about 3. The g curve corresponding to Sk=−0.18 as well
as in the region of z /��3 is slightly different from that of Sk
=0.0 �Gaussian�. The differences between these two curves in this
region become the primary factors of those differences shown in
Fig. 8. This behavior is theoretically abnormal; however, the dif-

ferences shown in the region of d̄�2 are quite small.
As Fig. 8 shows, the three curves marked by 2�a�, 2�b�, and 2�c�

are, respectively, obtained by following curve 2�a�-curve 2�c� as
shown in Fig. 4. Small differences are shown among them only
when the mean separation is quite small. Nevertheless, the total
loads satisfy: �Ft /E ·Aa�2�a�
 �Ft /E ·Aa�2�b�
 �Ft /E ·Aa�2�c� if

they are evaluated at the same mean separation �d̄�. This ordering
is the same as that shown in Fig. 4 for the topothesies �G� of these
three curves. Therefore, a higher total load is created by a contact
surface with a larger G which varies with the mean separation.

The effect of variable D, G and g�z̄� on the dimensionless real
contact area is shown in Fig. 9. This figure exhibits the character-
istic that a decrease in the mean separation can result in an in-
crease in the total load, thereby increasing the real contact area.
However, under a fixed total load, the real contact area predicted
by the Gaussian g�z̄� �D and G are two invariants� is always larger
than that predicted by the variable g�z̄�; and the difference be-
tween them is significantly enlarged by increasing the total load.
The conjunction of the results shown in Figs. 8 and 9 implies that
the real contact area predicted by variable G and D, as well as
non-Gaussian g�z̄�, is larger than that predicted by constant G and
D, as well as Gaussian g�z̄�, if they are evaluated at a small mean
separation. The results of Ar /Aa corresponding to curves 2�a�–
2�c� shown in Fig. 4 are so close that the differences among them

Fig. 8 Variations of the dimensionless mean separation with
the dimensionless total load. They are presented to compare
the evaluations based on variable G and D as well as non-
Gaussian g„z̄…, with the evaluations based on constant G and D
as well as Gaussian g„z̄….
are negligibly small.
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Figure 10 shows the variations of N�a�� /Aa, with the mean

separation d̄ for these two different evaluation models. The behav-
ior exhibited in the dimensionless mean separations smaller than
about 2.0 shows that the N�a�� /Aa value predicted by variable
D ,G, and non-Gaussian g�z̄�, is higher than that predicted by
assuming constant D ,G, and Gaussian g�z̄�. However, the behav-
ior exhibited in mean separations larger than 2.0 is exactly oppo-
site. Theoretically, these two curves should be grouped together

when d̄�2 because the difference in N�a�� /Aa between these two
models should be very small as the mean separation becomes
large. This difference can be accounted for by the conclusion de-
rived in the interpretation of differences shown in Fig. 8 for the

region of d̄�2. The evaluations of N /Aa based on curves 2�a�–
2�c� exhibited in Fig. 4 show significant differences among them
as the mean separation becomes small. The results satisfy:
�N /Aa�2�c�
 �N /Aa�2�b�
 �N /Aa�2�a�.

4 Conclusions

1. The reported experimental results show the characteristic

Fig. 9 Variations of the dimensionless real contact area with
the dimensionless total load. They are presented to compare
the evaluations based on the two different models described in
Fig. 8.

Fig. 10 Variations of N„a�… /Aa with the dimensionless mean
separation. They are presented to compare the evaluations

based on the two different models described in Fig. 8.

Journal of Applied Mechanics
that the fractal dimension varies with the mean separation of
two contact surfaces. In the present study, the relationship
between the fractal dimension and the topothesy can be es-
tablished by incorporating the theoretical deductions with
the experimental data. The probability density function g�z̄�
of surface asperities is also changed to be a non-Gaussian
distribution according to the experimental results. All these
roughness parameters can be expressed as functions of the
mean separation.

2. The relationship among D, G, and Cp can be derived from
the equivalence of two structure function expressions, which
are developed in different ways. The variations of G are thus
determined when the fractal dimension D and the scaling
coefficient Cp can be obtained from the experimental results
of the number of contact spots, N�a��, and the power spec-
trum function P�� shown at different mean separations.

3. The probability density functions shown in the experimental
results of different loads can be expressed as a function of
the skewness parameter �Sk� of asperity heights. The abso-
lute value of the skewness is increased by reducing the mean
separation.

4. The total load predicted by variable D and G, as well as
non-Gaussian g, is greater than that predicted by constant D
and G, as well as Gaussian g. The differences become sig-
nificant as the mean separation is reduced to small values.
The real contact area and the number of contact spots have
shown the same behavior as the total load.

Nomenclature
ac � critical contact spot area
āc � dimensionless critical contact spot area, ac /�2

aL � largest contact spot area
āL � dimensionless largest contact spot area, aL /�2

a� � dimensionless contact area of an asperity
ā1 � �� 1

110
�1/�D−2�� · āc

ā2 � �� 1
6

�1/�D−2�� · āc
Ar � real contact area
Ar � dimensionless real contact area, Ar /�2

Aa � apparent area
Aa � dimensionless apparent area, Aa /�2

d̄ � dimensionless mean separation, d /�
D � 3-D fractal dimension �2�D�3�
E � effective Young’s modulus
F � contact load of an asperity

F̄ � dimensionless contact load
Ft � total contact load

Ft � dimensionless total contact load, Ft / �E ·�2�
g�z̄� � probability density function of asperity heights

G � topothesy

Ḡ � dimensionless topothesy, G /�
H � hardness of the softer material in contact

Kt � kurtosis
n�a�� � size distribution of contact spots of area a�

N � number of contact spots
P � mean contact pressure

P̄ � dimensionless mean contact pressure
R � equivalent radius of curvature of an asperity

R̄ � dimensionless equivalent radius, R /�
Sk � skewness
Y � yield strength of softer material

z�x ,y� � modified two-variable Weierstrass-Mandelbrot

function
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Greek symbols
� � a parameter that determines the density of fre-

quencies in the surface �=1.5�
� � deformation at an asperity

�̄ � dimensionless deformation at an asperity, � /�
�c � critical deformation
� � standard deviation of surface heights
� � length scale

�1 ,�2 � Poisson ratios of surface 1 and surface 2,
respectively

Subscripts
e � elastic deformation

ep � elastoplastic deformation
p � plastic deformation

Appendix
Equations �13a� and �13b� are now substituted into Eqs. �4� and

�9� to obtain the a�-�̄ relationships in the fractal form for the
elastoplastic and the fully plastic deformation regimes, respec-
tively. By following the same procedures deduced to

ne�a���=−
1

a�

dĀe

da�
� ,

the size distribution function, nep1�a��, for the first elastoplastic
regime, nep2�a�� for the second elastoplastic regime, and np�a��
for the fully plastic regime, respectively, are obtained as follows:

nep1 or ep2 or p�a�� = −
1

a�

dĀep1 or ep2 or p

dz̄

d�̄

da�
�A1�

The value of dĀep1 or ep2 or p /dz̄ in Eq. �A1�, by the use of Eq.
�27�, gives

dĀep1 or ep2 or p

dz̄
= −

��

�2 + �2 �Aa · g�ep1 or ep2 or p �A2�

The substitutions of the a�-�̄ relationship developed for each of

these three regimes and the corresponding dĀep1 or ep2 or p /dz̄ ex-
pression shown in Eq. �A2� into Eq. �A1� give the size distribution
functions for these three regimes as

nep1�a�� =
� · �

�2 + �2Aa · g�d̄ + �̄c� · ��1.1236 − 0.3386D�

��KH

E
�0.239

��0.38D−1.021��ln ��0.38

� 2�3.044−0.76D�Ḡ�0.76D−1.522� · a��−0.38D−0.739�� �A3�

nep2�a�� =
� · �

�2 + �2Aa · g�d̄ + 6�̄c� · ��1.1 − 0.33D�

��KH

E
�0.255

��0.373D−0.99��ln ��0.373

� 2�2.981−0.746D�Ḡ�0.746D−1.49� · a��−0.373D−0.755��

�A4�
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np�a�� =
� · �

�2 + �2Aa · g�d̄ + 110�̄c� · 24−DḠ�D−2�

��ln ��1/2��D−3�/2a��−1−D�/2
3 − D

4
� �A5�
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On the Uniqueness of Solutions
for the Identification of Linear
Structural Systems
This work tackles the problem of global identifiability of an undamped, shear-type, N
degrees of freedom linear structural system under forced excitation without any prior
knowledge of its mass or stiffness distributions. Three actuator/sensor schemes are pre-
sented, which guarantee the existence of only one solution for the mass and stiffness
identification problem while requiring a minimum amount of instrumentation (only 1
actuator and 1 or 2 sensors). Through a counterexample for a 3DOF system it is also
shown that fewer measurements than those suggested result invariably in non-unique
solutions. �DOI: 10.1115/1.2062829�
Introduction
Parametric system identification consists of two basic steps:

First, a model for the actual system to be identified is formalized
in terms of a set of differential equations, which target to describe
with reasonable fidelity the physical response of the system to
applied stimuli if the coefficients or parameters involved are cho-
sen appropriately. The second step in the identification procedure
consists of optimizing these parameters so that the model behaves
as closely to the actual system as possible. Once the mathematical
model with its parameters has been determined, it can be used, for
instance, to simulate the behavior of the system under different
conditions of external forcing. With successive identifications, the
variation of the model parameters can be calculated and used to
infer the deterioration of the physical system as a damage detec-
tion procedure.

The behavior of the system can be understood in a broad sense
as a response of the system �output� to a set of stimuli �inputs�. In
structural engineering, a typical way to describe this behavior is
through the dynamic signature of the structure, that is the charac-
teristic motion undergone by the system when a set of dynamic
forces are applied. Therefore, to obtain the dynamic signature of a
structure it is necessary to record its movements at different loca-
tions as well as the forces applied. Ideally, the more measurements
obtained, the more complete the dynamic characterization of the
structure will be. On the other side, for practical purposes, instru-
mentation has to be kept at a minimum for economic reasons.

Through the years, the identification algorithms that have been
developed have tried to obtain a complete characterization of the
system with a minimum amount of input and output measure-
ments in order to lower the economic requirements while still
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accomplishing the final task of identifying the system accurately.
The question that arises naturally then is what is the minimum
amount of measurements needed to identify the structure com-
pletely and unambiguously?

The problem of determining whether a system can be identified
uniquely with a given set of inputs and outputs is known as the
problem of global identifiability. A linear model structure charac-
terized by the transfer function G�s ,��, which depends on the set
of parameters �, is said to be globally identifiable at �* if
G�s ,���G�s ,�*� for all s implies that �=�*. A comprehensive
treatment of the subject and the existent methodologies to tackle
this problem can be found in the works of Nguyen and Wood �1�
and Walter �2�. It is quite difficult to provide an answer to the
question of identifiability for general models, without using the
specific equations and properties of the system at hand. These
difficulties notwithstanding, Katafygiotis and Beck �3� present a
procedure to test global identifiability of structural models appli-
cable in general, and with a similar philosophy, Ljung and Glad
�4� develop a methodology based on differential algebra to answer
the question of identifiability for general models. However, both
approaches require the assistance of computer programs and the
manipulation of all the equations of the problem. Therefore, it is
difficult to obtain a general answer for general N-dimensional
systems. Instead, a tailored approach for the problem of identifi-
cation of shear-type structures, as presented by Udwadia et al.
�5,6�, offers a more straightforward test for identifiability using
the particular structure of this specific problem. This approach is,
nevertheless, applicable to linear structures, whereas the other
more general approaches apply to nonlinear models as well. For
nonlinear shear-type building structures, it may be possible to
adapt these formerly cited general approaches to the model struc-
ture at hand to obtain similar conclusions to those presented here
but of application to nonlinear problems as well.

In this paper, the problem of identification of a linear shear-type
building structure with N degrees of freedom is analyzed using the
polynomial regularity of the problem, already pointed out by Ud-
wadia and Sharma �5� in their analysis of uniqueness for the stiff-
ness distribution of a structure excited by a single actuator located

at the first floor. Their results are expanded here and are general-
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ized to the case of a single actuator located at any degree of
freedom of the structure. The hypothesis of known mass distribu-
tion is removed in this analysis and the structure identification is
performed here without any prior knowledge of mass or stiffness.
Three sufficient conditions for guaranteeing uniqueness are pro-
posed using just one or two sensors, depending on the location of
the actuator.

Note that satisfying global identifiability does not mean that the
unique solution is found. Indeed, to find this solution it is usually
necessary to solve a nonlinear optimization problem that can be
quite complex. In the last section of the paper a simple 3DOF
system is studied analytically. It will be shown how the complex-
ity of the problem grows quickly with the degrees of freedom of
the system. An algorithm that is not sensitive to entrapment in
local minima or to initial estimates could, in theory, tackle the
problem appropriately. See for example the works of Koh et al.
�7�, Chou and Ghaboussi �8�, and Franco et al. �9�, where the
problem of structural system identification is approached with op-
timization techniques based on evolutionary computation.

The input and output records used in the mathematical proofs
are supposed to be noise-free, as is customary in the analysis of
global identifiability. The existence of noise may cause the appear-
ance of local minima in the parameter optimization problem and it
may cause the global optimum to shift from the location of the
actual desired values, but this concerns the optimization process
and not the question of identifiability. The conclusions and results
presented here are naturally applicable to any dynamic system that
can be described by the same mathematical expression, that is a
positive definite diagonal mass matrix and a positive definite tridi-
agonal stiffness matrix as described in the following section.

Problem Statement
Consider the one-dimensional model of an N degree of freedom

undamped oscillator represented by the floor masses mi , i
=1,2 , . . . ,N, and the corresponding stiffnesses ki, i=1,2 , . . . ,N as
can be seen in Fig. 1. Both masses and stiffnesses have positive
values �mi�0 and ki�0 for i=1,2 , . . . ,N�. The identification
problem consists of determining the stiffnesses ki and masses mi
from a knowledge of the time history of the input force f�t�,
applied at the jth degree of freedom �1� j�N�, and a set of
responses recorded at particular locations. All time functions in
this discussion are assumed to be Laplace transformable. Al-
though damping is generally present in real structures, it was
shown by Udwadia et al. �6� that damping did not alter their
conclusions on uniqueness reached with the analysis of the un-
damped oscillator. Therefore, for the sake of simplicity, the study
presented here focuses on the uniqueness of the solution for the
case of undamped structures.

The equations of motion governing this problem can be ex-
pressed as:

Mẍ�t� + Kx�t� = Bf�t� �1�

M = �
m1

m2

�

mN−1

mN

�;

K = �
k1 − k1

− k1 k1 + k2 − k2

− k2 �

− kN−1

− kN−1 kN−1 + kN

� �2�

where M and K are the mass and stiffness matrices of the struc-

tural system, respectively. B is the input vector, whose compo-
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nents are all zero except for the jth component, where the input
force f�t� is applied, which is equal to 1. Vector x�t� contains the
responses of the system for all degrees of freedom, xi�t� for i

=1,2 , . . . ,N, with ¨ indicating double differentiation with respect
to time. Since mi and ki for all i=1,2 , . . . ,N are real and positive,
we can reduce the system of equations �1� to

ÿ�t� + Ay�t� = �f�t� �3�

y = M1/2x, � = M−1/2B = �0, . . . ,0,
1

	mj

,0, . . . ,0
T

,

A = M−1/2KM−1/2 �4�

where the only nonzero component of vector � is the jth compo-
nent, corresponding to the location where the input force is ap-
plied. The matrix A thus obtained is a symmetric tridiagonal ma-

Fig. 1 One-dimensional shear-type building model with N de-
grees of freedom, input located at the jth story and output mea-
sured at all locations
trix and can be expressed as:
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A = �
b1 − a1

− a1 b2 − a2

− a2 �

− aN−1

− aN−1 bN

� �5�

where

ai =
ki

	mimi+1

, 1 � i � N − 1, bi =
ki−1 + ki

mi
, 1 � i � N, k0

= 0 �6�

with all ai and bi coefficients strictly positive.
Taking the Laplace transform of Eq. �3� and replacing the trans-

form variable by 	−�, the equation of motion yields
�A−�I�Y���=�F���. The symbols used for the Laplace trans-
forms are the capitalized symbols of each function and they are
functions of the transform variable 	−�, or simply, functions of �.
The Laplace transform of the ith component of Y���, Yi���, can
be expressed, using Cramer’s rule, as Yi���= ��i /��F���, where
�=det�A−�I�, and �i is the determinant of the matrix obtained
from �A−�I� by replacing its ith column with �.

For notational convenience, let us denote by Pi��� the determi-
nant of the upper left i� i submatrix of �A−�I� and by Qi���, the
determinant of the lower right �N− i+1�� �N− i+1� submatrix of
�A−�I�. In this way, note that PN���=Q1���=det�A−�I�. It is
possible to express then the Laplace transforms of the outputs
Xj−n��� �at location above the one where the input excitation is
applied�, Xj��� �at the same location where the excitation is ap-
plied�, and Xj+l��� �for locations below the one of the input exci-
tation�, for 1� j�N, 1�n� j−1, and 1� l�N− j, as

Xj−n��� =
1

	mj−n

aj−n . . . aj−1
Pj−n−1���Qj+1���

����
F���
	mj

�7�

Xj��� =
1

	mj

Pj−1���Qj+1���
����

F���
	mj

�8�

Xj+l��� =
1

	mj+l

aj+l−1 . . . aj
Pj−1���Qj+l+1���

����
F���
	mj

�9�

where, by definition, P0���=QN+1���=1 and Xj��� is the trans-
form of xj�t�, the response of the structure at the jth degree of
freedom. Using the definitions introduced in Eq. �6�, the previous
relationships can be rewritten as

Xj−n��� =
kj−n

mj−n
. . .

kj−1

mj−1

1

mj

Pj−n−1���Qj+1���
����

F��� �10�

Xj��� =
1

mj

Pj−1���Qj+1���
����

F��� �11�

Xj+l��� =
1

mj+l

kj+l−1

mj+l−1
. . .

kj

mj

Pj−1���Qj+l+1���
����

F��� �12�

Some Useful Properties
In this section, some useful lemmas are developed that will

make it easier to draw conclusions regarding the uniqueness of
solution of the identification problem for different input-output
schemes presented in the following sections. Lemmas 1 and 4,
whose proofs have been omitted here, are obtained directly from
the structure of matrix A and are well described in the literature
�10,5�.

LEMMA 1: �a� The functions Pi��� defined in the previous sec-

tion satisfy the recursion relation

Journal of Applied Mechanics
Pi��� = �bi − ��Pi−1��� − ai−1
2 Pi−2���, 2 � i � N ,

P1��� = �b1 − �� �13�

�b� Each Pi��� mentioned above is a polynomial of degree i with
�−1�i�i as the leading term, that is lim�→�Pi��� /�i= �−1�i.

Proof: �a� is a known result related to the structure of the matrix
A �10�. �b� follows through induction as indicated by Udwadia
and Sharma �5�.

LEMMA 2: �a� The functions Qi��� defined above satisfy the
recursion relation

Qi��� = �bi − ��Qi+1��� − ai
2Qi+2���, 1 � i � N − 1, QN���

= �bN − �� �14�

�b� Each Qi��� mentioned above is a polynomial of degree N− i
+1 with �−1�N−i+1�N−i+1 as the leading term, that is
lim�→�Qi��� /�N−i+1= �−1�N−i+1.

Proof: �a� follows from the structure of the �N− i+1�� �N− i
+1� lower right submatrix of A. There are only two nonzero co-
efficients in the first column of such matrix, namely �bi−�� at
location �1,1�, and −ai at location �2,1�. The determinant of this
matrix, Qi���, can be calculated using Laplace expansion with
these coefficients, obtaining

Qi��� = �bi − ����bi+1 − �� − ai+1

− ai+1 � − aN−1

− aN−1 �bN − ��
� − �− ai�

�� − ai

− ai+1 �bi+2 − �� − ai+2

− ai+2 �

� . �15�

The first determinant is, by definition, Qi+1���. The second deter-
minant is the determinant of a block lower triangular matrix,
which is equal to the determinant of the block matrices on the
diagonal �11�, namely −aiQi+2���. Substituting these values into
expression �15� leads us to Eq. �14�. �b� can be easily proved by
induction analogously to lemma 1�b�.

LEMMA 3: The determinant ���� can be expressed as

���� = �bi − ��Pi−1���Qi+1��� − ai−1
2 Pi−2���Qi+1���

− ai
2Pi−1���Qi+2��� �16�

for any i=2,3 , . . . ,N−1.
Proof: The result is obtained by considering the Laplace expan-

sion of the determinant of matrix A. Consider the ith column of A,
which contains only three nonzero elements, namely −ai−1 at lo-
cation �i−1, i�, �bi−�� at location �i , i�, and ai at location �i
+1, i�. This yields that

���� = �bi − ���
� − ai−2

− ai−2 �bi−1 − ��
�bi+1 − �� − ai+1

− ai+1 �

� − �− ai−1�

��
� − ai−3

− ai−3 �bi−2 − �� − ai−2

− ai−1 − ai

�bi+1 − �� − ai+1

− ai+1 �

� − �− ai�

��
� − ai−2

− ai−2 �bi−1 − ��
− ai−1 − ai

− ai+1 �bi+2 − �� − ai+2� �17�
− ai+2 �
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The first determinant is that of a block diagonal matrix and, there-
fore, it is equal to the product of their determinants, namely
Pi−1���Qi+1���. The second determinant is that of an upper trian-
gular block matrix and it is equal to −ai−1Pi−2���Qi+1���. Simi-
larly, the third one is equal to −aiPi−1���Qi+2���. Thus, substitu-
tion of these values into Eq. �17� immediately yields the result of
lemma 3.

LEMMA 4: For i=1,2 , . . . ,N the polynomials Pj��� and Pj−1���
do not have any common zeros.

Proof: This result can be obtained by induction, as indicated by
Udwadia and Sharma �5�.

LEMMA 5: For i=1,2 , . . . ,N the polynomials Qj��� and Qj+1���
do not have any common zeros.

Proof: Analogous to the proof of lemma 4, this result follows
by induction �reverse induction in this occasion�. Consider that the
polynomials

QN��� = �bN − �� and QN−1��� = �bN−1 − ���bN − �� − aN−1
2

�18�

could only have �=bN as their common zero because it is the only
zero of QN���. This, though, would imply that necessarily aN−1
=0, which is not possible by the definition of all ai as strictly
positive real values. Now suppose that Qi��� and Qi+1��� do not
have common zeros for n� i�N, and let

Qn−1��*� = Qn��*� = 0 �19�

Using the recursion relation of lemma 2, Qn−1��*� can be written
as

Qn−1��*� = �bn−1 − �*�Qn��*� − an
2Qn+1��*� = − an

2Qn+1��*� = 0

�20�

which implies that Qn+1��*�=0 since an�0. This is a contradic-
tion since Qn��� and Qn+1��� do not have common zeros for n
� i�N. Thus the lemma is proved.

Two more lemmas are included in this section which refer ex-
plicitly to the problem of identification and uniqueness. It is nec-
essary at this point to introduce some additional notation. Suppose
that there exist two distinct systems, one denoted by the already
introduced variables m1 , . . . ,mN and k1 , . . . ,kN and another by

m̂1 , . . . , m̂N and k̂1 , . . . , k̂N. Since both systems have the same

structure, for both it is possible to build the matrices A and Â as
indicated in Eq. �5� with the coefficients ai and bi defined in Eq.

�6� for one system, and the respective coefficients âi and b̂i for the

·-system. Similarly, a set of P̂��� and Q̂��� polynomials are de-

fined for the ·̂-system. The two following lemmas relate the poly-
nomials of one system to the polynomials of the other system
given certain conditions.

LEMMA 6: If

Pj���P̂j−1��� = P̂j���Pj−1��� , �21�
then

Pi��� = P̂i���, bi = b̂i,

∀i = 1,2, . . . , j, âi = ai ∀ i = 1,2, . . . , j − 1 �22�

Proof: Considering Lemma 1�a�, substitute Pj��� and P̂j��� in
Eq. �22� with the equivalent expression obtained from Eq. �13� so
that

P̂j−1�����bj − ��Pj−1��� − aj−1
2 Pj−2����

= Pj−1�����b̂j − ��P̂j−1��� − â2 P̂j−2���� �23�
j−1
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�bj − ��P̂j−1���Pj−1��� − aj−1
2 P̂j−1���Pj−2���

= �b̂j − ��Pj−1���P̂j−1��� − âj−1
2 Pj−1���P̂j−2��� �24�

�bj − b̂j�P̂j−1���Pj−1��� = aj−1
2 P̂j−1���Pj−2��� − âj−1

2 Pj−1���P̂j−2���
�25�

Dividing by P̂j−1���Pj−1��� and letting �→�, the equality bj

= b̂j is obtained with help of lemma 1�b�. Thus it follows that

0 = aj−1
2 P̂j−1���Pj−2��� − âj−1

2 Pj−1���P̂j−2��� �26�

In both polynomial products, the highest power of � is � j−1� j−2

=�2j−3. This allows us to divide Eq. �26� by �2j−3 and to let �
approach � again, obtaining the result âj−1

2 =aa−1
2 . Given that all

ai’s are defined to be positive, this is equivalent to âj−1=aj−1.

Substituting this into Eq. �26� yields also that P̂j−1���Pj−2���
= Pj−1���P̂j−2���. This equation is analogous in its structure to the
original hypothesis of the lemma, thus the process can be re-

peated, obtaining that P̂i���Pi−1���= Pi���P̂i−1��� and bi= b̂i for
all i=2,3 , . . . , j, and ai= âi for all i=2,3 , . . . , j−1. This recursion
process leads finally to the last product of polynomials, namely

P̂1���P0���= P1���P̂0���. Since P0���= P̂0���=1, substitution

yields that P̂1���= P1���, which implies that b1= b̂1 as well. This
can be used in turn in the previously obtained product

P̂2���P1���= P2���P̂1��� to state that also P2���= P̂2���. These
recursions can be applied for all Pi���, with i=1,2 , . . . , j thus
proving the lemma.

LEMMA 7: If

Qj+1���Q̂j��� = Q̂j+1���Qj��� �27�
then

Qi��� = Q̂i���, bi = b̂i,

∀i = j, j + 1, . . . ,N, âi = ai ∀ i = j, j + 1, . . . ,N − 1. �28�
Proof: The proof follows in the same way as in lemma 6. Sub-

stitute the expressions for Qj��� and Q̂j���, introduced in lemma
2�a�, into Eq. �27� and develop it as follows

Qj+1�����b̂j − ��Q̂j+1��� − âj
2Q̂j+2����

= Q̂j+1�����bj − ��Qj+1��� − aj
2Qj+2���� �29�

�b̂j − ��Q̂j+1���Qj+1��� − âj
2Q̂j+2���Qj+1���

= �bj − ��Qj+1���Q̂j+1��� − aj
2Qj+2���Q̂j+1��� �30�

�b̂j − bj�Q̂j+1���Qj+1��� = âj
2Q̂j+2���Qj+1��� − aj

2Qj+2���Q̂j+1���
�31�

Using the same strategy as before, that is dividing by

Q̂j+1���Qj+1��� and letting �→�, it can be concluded that bj

= b̂j. Substitution of this result into Eq. �31� leads to

0 = âj
2Q̂j+2���Qj+1��� − aj

2Qj+2���Q̂j+1��� �32�

Dividing Eq. �32� by �2N−2j−1 and letting � approach � again, it
follows that âj

2=aj
2, which implies after substitution that

Q̂j+2���Qj+1���=Qj+2���Q̂j+1���. As before, this recursion can be
applied up to the last product of polynomials, namely

Q̂N���QN+1���=QN���Q̂N+1���. Since QN+1���= Q̂N+1���=1, sub-
ˆ ˆ
stitution yields that QN���=QN���, which implies that bN=bN as
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well. Applying the recursion backwards for all Qi���, with i
= j , j+1, . . . ,N−1 the lemma is proved.

Sufficient Conditions to Guarantee Uniqueness
Now let us focus on the question: What is the minimum amount

of information that is required to guarantee the uniqueness of the
solution for the identification of a shear-type one-dimensional
building model? This question is important because the cost of the
identification of an actual structure grows with the number of
measurements. Therefore, it is of interest to know whether or not
a configuration of measurements that uses very few sensors can
provide information that leads to a unique solution.

In this section we will analyze three configurations �see Fig. 2�
of input and output measurements that yield a unique identifica-
tion of mass and stiffness distribution for a one-dimensional
NDOF shear-type building model.

Configuration 1: 2 Sensors and 1 Actuator at Any Degree of
Freedom. Suppose that the known excitation force is applied
solely at floor j, with 2� j�N−1, and that two output measure-
ments are available at floors j and j+1, as seen in configuration 1
of Fig. 2. The question we are addressing is the following: Can we
find two distinct mass and stiffness distributions that yield the
same outputs at various degrees of freedom when excited by the
same force? To answer this question, let us suppose that the same
excitation force f�t� is applied at the jth floor of two distinct
systems characterized by m1 , . . . ,mN ,k1 , . . . ,kN and by

m̂1 , . . . , m̂N , k̂1 , . . . , k̂N, respectively. Following Eqs. �10�–�12�, we
can express the Laplace transforms of the measurements for one
system as

Xj��� =
1

mj

Pj−1���Qj+1���
����

F��� �33�

Xj+1��� =
1

mj+1

kj

mj

Pj−1���Qj+2���
����

F��� �34�

ˆ

Fig. 2 Possible configurat
and for the ·-system as
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X̂j��� =
1

m̂j

P̂j−1���Q̂j+1���

�̂���
F��� �35�

X̂j+1��� =
1

m̂j+1

k̂j

m̂j

P̂j−1���Q̂j+2���

�̂���
F��� �36�

Since the outputs obtained at the jth and �j+1�th degrees of free-
dom of one system are supposed to be identical to the correspond-
ing ones from the second system, we can equate the Laplace trans-
forms of the outputs of both systems and obtain the following
equations, where the transform of the excitation, F���, has been
eliminated because it is the same for both systems

1

mj

Pj−1���Qj+1���
����

=
1

m̂j

P̂j−1���Q̂j+1���

�̂���
�37�

1

mj+1

kj

mj

Pj−1���Qj+2���
����

=
1

m̂j+1

k̂j

mj

P̂j−1���Q̂j+2���

�̂���
�38�

Note that in both equations, the numerator of the polynomial
fraction is of a lesser order in � than the denominator. In particu-
lar, the numerator of Eq. �37� has a degree of � j−1�N−�j+1�+1

=�N−1 and the numerator of Eq. �38� has a degree of

� j−1�N−�j+2�+1=�N−2, while both denominators, ���� and �̂���,
are polynomials of degree �N. Thus, multiplying both sides of Eq.
�37� by � and Eq. �38� by �2, and letting �→�, it is possible to
obtain this new set of equations

1

mj
=

1

m̂j

�39�

1

mj+1

kj

mj
=

1

m̂j+1

k̂j

m̂j

�40�

which implies that

ˆ

s for unique identification
ion
mj = mj �41�
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kj

mj+1
=

k̂j

m̂j+1

�42�

Substituting Eqs. �39� and �40� into �37� and �38�, respectively,
provides also the following equalities for the ratios of polynomials

Pj−1���Qj+1���
����

=
P̂j−1���Q̂j+1���

�̂���
�43�

Pj−1���Qj+2���
����

=
P̂j−1���Q̂j+2���

�̂���
�44�

Since all polynomials involved are in general different than
zero for an arbitrary �, division of Eq. �44� by Eq. �43� yields

Qj+2���
Qj+1���

=
Q̂j+2���

Q̂j+1���
�45�

which can also be expressed as

Qj+2���Q̂j+1��� = Q̂j+2���Qj+1��� �46�

By lemma 5, we can conclude that

Qi��� = Q̂i���, bi = b̂i, ∀ i = j + 1, j + 2, . . . ,N, âi = ai

∀i = j + 1, j + 2, . . . ,N − 1 �47�
Let us consider now Eq. �43� and clear the denominators to

obtain

Pj−1���Qj+1����̂��� = P̂j−1���Q̂j+1������� �48�

Using lemma 3 to substitute the ���� and �̂��� polynomials, it is
possible to express the previous equation as

Pj−1���Qj+1�����b̂j − ��P̂j−1���Q̂j+1��� − âj−1
2 P̂j−2���Q̂j+1���

− âj
2P̂j−1���Q̂j+2���� �49�

= P̂j−1���Q̂j+1�����b̂j − ��P̂j−1���Q̂j+1��� − aj−1
2 P̂j−2���Q̂j+1���

− aj
2Pj−1���Qj+2���� �50�

expression that, by grouping the polynomial products, reduces to

�b̂j − bj�P̂j−1���Q̂j+1���Pj−1���Qj+1���

− âj−1
2 P̂j−2���Q̂j+1���Pj−1���Qj+1���

− âj
2P̂j−1���Q̂j+2���Pj−1���Qj+1���

= − aj−1
2 Pj−2���Qj+1���P̂j−1���Q̂j+1���

− aj
2Pj−1���Qj+2���P̂j−1���Q̂j+1��� �51�

Since the product P̂j−1���Q̂j+1���Pj−1���Qj+1��� is a polyno-
mial of higher order in � than the rest of the polynomial products
in Eq. �51�, it is possible to divide all terms by the highest power,
i.e., �2N−2, and let �→�. In this way, we obtain the following
equality

bj = b̂j �52�

that allows us to express Eq. �51� as

− âj−1
2 P̂j−2���Q̂j+1���Pj−1���Qj+1���

− âj
2P̂j−1���Q̂j+2���Pj−1���Qj+1���

= − aj−1
2 Pj−2���Qj+1���P̂j−1���Q̂j+1���

− a2Pj−1���Qj+2���P̂j−1���Q̂j+1��� �53�
j
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Since all the polynomial products have the same order, dividing
by the highest power �2N−3, and letting �→�, leads to the rela-
tionship

âj
2 − aj

2 = aj−1
2 − âj−1

2 �54�

Now consider that from Eq. �42�, kj /kj =mj+1 / m̂j+1=� so that

kj = �k̂j and mj+1 = �m̂j+1 �55�

Recalling that from Eq. �41�, mj = m̂j and using Eq. �55�, it is
possible to obtain a similar expression of aj

2 as

aj
2 =

kj
2

mjmj+1
=

�2k̂j
2

m̂j�m̂j+1

= �
k̂j

2

m̂jm̂j+1

= �âj
2 �56�

so that aj−1
2 can be expressed as

aj−1
2 = âj−1

2 + âj
2 − aj

2 = âj−1
2 + âj

2 − �âj
2 = âj−1

2 + âj
2�1 − �� �57�

Since it is also known �Eq. �47�� that Qj+1���= Q̂j+1���, it is pos-
sible to simplify Eq. �53� so that

− âj−1
2 P̂j−2���Q̂j+1���Pj−1��� − âj

2P̂j−1���Q̂j+2���Pj−1���

= − �âj−1
2 + âj

2�1 − ���Pj−2���P̂j−1���Q̂j+1���

− �âj
2Pj−1���Qj+2���P̂j−1��� �58�

where aj
2 and aj−1

2 have been replaced by the relations �56� and

�57�, respectively. Considering Qj+1���= Q̂j+1��� and Qj+2���
= Q̂j+2��� �as shown in Eq. �47�� and rearranging the expression,
leads to

âj−1
2 Q̂j+1����Pj−2���P̂j−1��� − P̂j−2���Pj−1����

= âj
2�1 − ��P̂j−1����Q̂j+2���Pj−1��� − Q̂j+1���Pj−2����

�59�

Let us now introduce the scalar parameter 	�R defined as

	 =
âj

2�1 − ��
âj−1

2 , �60�

so that Eq. �59� can be rewritten as

Q̂j+1����Pj−2���P̂j−1��� − P̂j−2���Pj−1����

= 	P̂j−1����Q̂j+2���Pj−1��� − Q̂j+1���Pj−2���� �61�

Equation �61� is equivalent to saying that, if 	 exists and is dif-
ferent from zero, the two polynomial functions are linearly depen-
dent. To show that this is impossible, let us rearrange the functions
so that we can factor out Pj−1��� and Pj−2��� as

Pj−2����Q̂j+1���P̂j−1��� + 	Q̂j+1���P̂j−1����

= Pj−1����Q̂j+1���P̂j−2��� + 	P̂j−1���Q̂j+2���� �62�

This equation must hold for all ��R. In particular, consider �

=q1, where q1 is a zero of Qj+1���. Since Qj+1���= Q̂j+1��� �Eq.

�47��, it holds that q1 is also a zero of Q̂j+1. Then, evaluating
expression �62� for �=q1 we obtain that

0 = 	Pj−1�q1�P̂j−1�q1�Q̂j+2�q1� �63�

By lemma 5 we know that Qj+1��� and Qj+2��� do not have zeros

in common. Therefore, using the equality Qj+2���= Q̂j+2��� from

Eq. �47�, we can conclude that Q̂j+2�q1��0. In addition, the type
of structure at hand also requires that all eigenvalues of the matrix
A are distinct. Proof of this statement can be found in �5�. Since
the eigenvalues of A are distinct, the rank deficiency of matrix
�A−�I� evaluated at an eigenvalue of A is exactly one.

*
If Pj−1��� and Qj+1��� had a zero �=� in common, through
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lemma 3 it follows that it would also be a zero of the determinant
of �A−�I� and therefore an eigenvalue of A. Moreover, it can be
shown that this zero would be of multiplicity higher than one. In
fact, this eigenvalue problem can be considered as a linear system
of equations involving three subsystems, one characterized by the
upper left �j−1�� �j−1� submatrix of �A−�I�, one characterized
by the lower right �N− j�� �N− j� submatrix, and one character-
ized by the jth row of �A−�I�. If �* is a common zero of Pj−1���
and Qj+1���, Pj−1��*�=Qj+1��*�=0, then the ranks of these matri-
ces are lower than j−1 and N− j, respectively. This implies that
the rank of the complete system �A−�*I� is lower than N−1 and
that thus the rank deficiency induced by the eigenvalue �* is
higher than one. This contradicts the initial statement that �*,
being an eigenvalue of A, cannot have multiplicity higher than
one. Thus Pj−1��� and Qj+1��� cannot have any zeros in common.
Hence, in Eq. �63�, Pj−1�q1��0. Using the equivalence between

Qj+1��� and Q̂j+1��� expressed in Eq. �47�, it is possible to con-

clude that also P̂j−1�q1��0.
With this knowledge, it can be immediately concluded from Eq.

�63� that 	=0. Substitution of this value into Eqs. �60� and �61�
yields, respectively,

� = 1 �64�

�Pj−2���P̂j−1��� − P̂j−2���Pj−1���� = 0 �65�
which allows us to apply lemma 6 obtaining that

Pi��� = P̂i���, bi = b̂i,

∀i = 1,2, . . . , j − 1, âi = ai ∀ i = 1,2, . . . , j − 2 �66�

Substituting �=1 in Eqs. �56� and �57� immediately yields that

aj = âj �67�

aj−1 = âj−1 �68�
thus completing the unique determination, together with the re-
sults from Eqs. �47� and �52�, of all ai for all i=1,2 , . . . ,N−1 and
all bi for all i=1,2 , . . . ,N. It is straightforward to observe that this
allows one now to uniquely determine all stiffnesses and masses
cascading up and down the structure, starting with the values mj

= m̂j from Eq. �39� and kj = k̂j, mj+1= m̂j+1 from Eq. �55�.
Similarly, following an analogous procedure, it is possible to

obtain a unique determination of structural masses and stiffnesses
when a sensor is located directly above the actuator.

At this point, we can conclude that two systems, which have
equal outputs at two adjacent degrees of freedom when subjected
to the same input, are identical independent of the number of
DOFs of the system. Conversely, an identification problem that
relies on a collocated set of input-output and on an adjacent out-
put, must have a unique solution. This is an important statement to
guarantee the existence of a unique solution.

Configuration 2: 1 Sensor and 1 Actuator at the Nth Degree
of Freedom. Let us suppose now that a known input excitation is
solely applied on the lower floor �first floor� of the building and
that only one output measurement is available at that same floor,
as seen in configuration 2 of Fig. 2. Assuming that there might be
two structural systems, as before, that yield the same input-output
relation, let us equate the Laplace transforms of the outputs at the
first floor �index N in our notation�. For the first system, the
Laplace transform of the output at the lower floor can be ex-
pressed as

XN��� =
1

mN

PN−1���QN+1���
����

F��� �69�

which can be simplified, since PN���=���� and QN+1���=1 by

definition, as

Journal of Applied Mechanics
XN��� =
1

mN

PN−1���
PN���

F��� �70�

Analogously, for the second structural system �the ·̂-system� we
obtain that

X̂N��� =
1

m̂N

P̂N−1���

P̂N���
F��� �71�

Since the two systems experience the same output at the first floor,
it is possible to equate the two output transforms and obtain

1

mN

PN−1���
PN���

=
1

m̂N

P̂N−1���

P̂N���
�72�

Multiplying the expression by � on both sides and letting �→�, it
follows that

1

mN
=

1

m̂N

�73�

and consequently,

mN = m̂N �74�

PN−1���P̂N��� = P̂N−1���PN��� �75�

Through the use of lemma 6 with j=N, this equation implies that

Pi��� = P̂i���, bi = b̂i,

∀i = 1,2, . . . ,N, âi = ai ∀ i = 1,2, . . . ,N − 1 �76�

stating then that all bi and ai coefficients are uniquely determined.
As described in �5�, the following identity can be used

Pi−1�0�
Pi�0�

=
mi

ki
�77�

which for the case of i=N, leads to

PN−1�0�
PN�0�

=
mN

kN
and

P̂N−1�0�

P̂N�0�
=

m̂N

k̂N

�78�

Since Pi���= P̂i��� �Eq. �76�� and mN= m̂N �Eq. �74��, we can

equate these two expressions and obtain kN= k̂N. Having deter-
mined mN and kN and considering the uniqueness of the bi and ai
coefficients, it is straightforward to show in a cascading fashion,
starting at the Nth degree of freedom, the uniqueness of solution
for the entire distribution of mass and stiffness of the structure.

Configuration 3: 1 Sensor and 1 Actuator at the First De-
gree of Freedom. In a similar fashion, the uniqueness of the so-
lution can be proven for the case of a collocated set of input-
output measurements applied on the top floor �configuration 3 of
Fig. 2�. Again, let us assume that there might be two structural
systems that yield the same input-output relation on the top floor.
Following a procedure analogous to the one presented in the pre-
vious section, it is possible to equate the Laplace transforms of the
outputs at the roof to obtain

1

m1

Q2���
Q1���

=
1

m̂1

Q̂2���

Q̂1���
�79�

Multiplying the expression by � on both sides and letting �→�,
leads to

m1 = m̂1 �80�
and, consequently,

Q2���Q̂1��� = Q̂2���Q1��� �81�
Applying lemma 7 with j=1 the following result is obtained
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Qi��� = Q̂i���, bi = b̂i,

∀i = 1,2, . . . ,N, âi = ai ∀ i = 1,2, . . . ,N − 1 �82�

Again, all bi and ai coefficients are then uniquely determined.

Using m1= m̂1 and b1= b̂1 from Eqs. �80� and �82�, respectively, it

immediately follows that k1= k̂1. Plugging these two values into
the equality a1= â1 yields that m2= m̂2 and so, in cascade, all
masses and stiffnesses can then be determined. Therefore, also in
the case of 2 structures having the same input-output relations at
the top floor �configuration 3�, it is possible to affirm that these 2
structures are identical. This is also an important statement of the
uniqueness of solution in the identification of the mass and stiff-
ness distribution.

Collocation is Not a Sufficient Condition to Guarantee
Uniqueness

After seeing the results of uniqueness of the solution for con-
figurations 2 and 3, one might ask if the condition of collocation,
in general, would be a sufficient condition to ensure uniqueness.
Here, an example is presented that shows such a condition is
insufficient.

Consider the 3-story system of Fig. 3 with collocated measure-
ments of input and output at the second floor. This case does not
fit into configurations 2 and 3 presented in Fig. 2, hence unique-
ness of the solution cannot be guaranteed a priori. The equations
of motion are analyzed to find out if there are multiple systems
that yield the same output at the measured floor given the input
excitation at that same floor �collocated�. Let us assume that there

are two structural systems whose mass matrices �M and M̂� and

stiffness matrices �K and K̂� can be represented as

M = �m1 0 0

0 m2 0

0 0 m3
�, K = � k1 − k1 0

− k1 k1 + k2 − k2

0 − k2 k2 + k3
� �83�

M̂ = �m̂1 0 0

0 m̂2 0

0 0 m̂3
�, K̂ = � k̂1 − k̂1 0

− k̂1 k̂1 + k̂2 − k̂2

0 − k̂2 k̂2 + k̂3

� �84�

The Laplace transform of the output at the second floor for the
two systems can be expressed as

X2��� =
�2���
����

F���; X̂2��� =
�̂2���

�̂���
F��� �85�

Fig. 3 Collocated configuration for the 3DOF system
where
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�2��� = m1m3�2 + �k1m3 + m1k2 + m1k3�� + k1k2 + k1k3 �86�

���� = �3m1m2m3 + �m1m2k3 + k1m2m3 + m1m2k2 + m1k2m3

+ m1k1m3��2 + �m1k1k3 + k1m2k3 + m1k2k3 + m1k1k2

+ k1m2k2 + k1k2m3�� + k1k2k3, �87�

while �̂2 and �̂ have identical expressions but with ki and mi�i
=1,2 ,3� replaced by k̂i and m̂i�i=1,2 ,3�.

Let us assume that the ·̂-system represents the actual system and

that, therefore, the parameters m̂1, m̂2, m̂3, k̂1, k̂2, and k̂3 are fixed.
We now suppose that the other m1, m2, m3, k1, k2, and k3, has the
same input-output relation at the second degree of freedom as the

·̂-system. In this way, by equating X2���= X̂2���, it is possible to
obtain

�2����̂��� − �̂2������� = 0 �88�

which corresponds to a fifth-order polynomial in �. Since this
equation must hold for all ��R, all coefficients of the polynomial
in � must be identically equal to zero. The 6 coefficients of the
polynomial thus result in 6 nonlinear equations that relate the
parameters m1, m2, m3, k1, k2, and k3 to their counterparts of the

·̂-system.
Solving the nonlinear system of equations for the variables m1,

m2, m3, k1, k2, and k3 in function of the parameters m̂1, m̂2, m̂3, k̂1,

k̂2, and k̂3, will allow us to find all possible solutions.
Let us analyze first the coefficient of the highest order term ��5�

of Eq. �88�

− m̂1m̂3m1m2m3 + m1m3m̂1m̂2m̂3 = 0 �89�

from which it can be immediately concluded, since all the masses
are strictly positive, that m2= m̂2. This important, preliminary re-
sult tells us that the two systems must have an identical mass at
the second level and thus the identification of the second floor
mass is unique. The coefficient equation for �4 yields then

m1m3m̂1k̂1m̂3 − m̂1m̂3m1k1m3 + m1m3m̂1k̂2m̂3 − m̂1m̂3m1k2m3 = 0

�90�

Dividing by m1m3m̂1m̂3, the previous equation can be reduced to a

much simpler one as: k1+k2= k̂1+ k̂2, from which k1= k̂1+ k̂2−k2.
By using the results from Eqs. �89� and �90�, it is possible to
reduce the initial system of equations to a system of 4 nonlinear
equations in the unknown parameters m1, m3, k2, and k3.

Such a system of equations is quite complex but it can be
solved analytically through the use of Sylvester’s Dyalitic Elimi-
nation �12,13�. The first step of this technique consists in selecting
one of the unknown variables as a fixed parameter, 
. Here, the
variable k2 has been chosen equal to 
 since it substantially sim-
plifies the problem. Then, let us select combinations of the rest of
the variables as the new unknowns of what will become a linear
system of equations. The following initial variables are considered

x1 = m1; x2 = m3; x3 = m1m3 �91�

x4 = k4; x5 = m1k3; x6 = 1 �92�

The choice of x6=1 as a variable will later allow us to impose that
the solution may not be the trivial �zero� one, as indicated in �13�.
Considering these newly defined variables, the initial system of 4
equations can now be expressed in terms of a linear combination
of the new variables as

Hx = 0 �93�

where H is a matrix of dimension 4�6 whose components are

zero except the ones listed in Eqs. �94�–�109�. Using this new
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notation, the first equation, represented by the first row of H, will
have the nonzero components of H as

H1,1 = m̂1m̂3
2 �94�

H1,2 = m̂1k̂1
2m̂3 + m̂1m̂3
2 + 2m̂1k̂2m̂3k̂1 − 2m̂1m̂3
k̂2 − 2m̂1m̂3
k̂1

+ m̂1k̂2
2m̂3 �95�

H1,3 = − m̂1k̂2
2 − k̂1

2m̂3 �96�

The second equation will have the following components

H2,1 = m̂1k̂3
2 + 
2m̂1k̂2 − 
m̂1k̂2
2 + k̂1m̂3
2 − k̂1

2m̂3
 �97�

H2,2 = − 2m̂1k̂1k̂3
 + 2m̂1k̂2k̂3k̂1 − 2m̂1k̂2k̂3
 − 2m̂1k̂2
k̂1

− 2k̂1k̂2m̂3
 + k̂1m̂3
2 + k̂1k̂2
2m̂3 + k̂1

2k̂2m̂3 + m̂1k̂1
2k̂3 + m̂1k̂1k̂2

2

+ m̂1k̂2
2k̂3 + m̂1k̂1

2k̂2 + m̂1k̂2
2 − m̂1k̂2
2
 + m̂1k̂3
2 − k̂1

2m̂3


�98�

H2,3 = − k̂1k̂2
2 − k̂1

2k̂2 − k̂1
2k̂3 �99�

H2,4 = m̂1m̂3
2 − 2m̂1k̂2m̂3
 − 2m̂1k̂1m̂3
 + 2m̂1k̂2m̂3k̂1 + m̂1k̂1
2m̂3

+ m̂1k̂2
2m̂3 �100�

H2,5 = − k̂1
2m̂3 − m̂1k̂2

2 �101�

H2,6 = 
m̂1k̂2
2m̂3 + 2
m̂1k̂2m̂3k̂1 − 
2m̂1k̂1m̂3 + 
m̂1k̂1

2m̂3 − 
2m̂1k̂2m̂3

�102�

while, for the third and fourth equations, the only nonzero com-
ponents of H are

H3,1 = 
2k̂1k̂2 − 
k̂1
2k̂2 − 
k̂1

2k̂3
 + k̂1k̂3
2 − 
k̂1k̂2
2 �103�

H3,2 = k̂1
2k̂2k̂3 + k̂1k̂2

2k̂3 − 2k̂1k̂3
k̂2 + k̂1k̂3
2 − k̂1
2k̂3
 − k̂1k̂2

2
 − k̂1
2k̂2


+ k̂1k̂2
2 �104�

H3,4 = m̂1k̂1
2k̂2 − k̂1

2m̂3
 + m̂1k̂1k̂2
2 − 2m̂1k̂2
k̂1 − 2k̂1k̂3
k̂2

− 2m̂1k̂3
k̂2 + 2m̂1k̂2k̂3k̂1 − 2m̂1k̂3
k̂1 − m̂1k̂2
2
 + m̂1k̂2
2

+ k̂1m̂3
2 + k̂1k̂2
2m̂3 + k̂1

2k̂2m̂3 + m̂1k̂1
2k̂3 + m̂1k̂3
2 + m̂1k̂2

2k̂3

�105�

H3,5 = − k̂1
2k̂3 − k̂1k̂2

2 − k̂1
2k̂2 �106�

H3,6 = 
m̂1k̂1
2k̂3 − 
2m̂1k̂1k̂3 + 
m̂1k̂1k̂2

2 − 
2m̂1k̂1k̂2 + 2
m̂1k̂2k̂3k̂1

− 
2m̂1k̂2k̂3 + 
m̂1k̂1
2k̂2 + 
m̂1k̂2

2k̂3 − 
2k̂1k̂2m̂3 + 
k̂1k̂2
2m̂3

+ 
k̂1
2k̂2m̂3 �107�

H4,4 = − k̂1
2k̂2
 − k̂1k̂2

2
 + k̂1k̂2
2 + k̂1k̂3
2 + k̂1
2k̂2k̂3 + k̂1k̂2

2k̂3 − k̂1
2k̂3


− 2k̂1k̂3
k̂2 �108�

H4,6 = − 
2k̂1k̂2k̂3 + 
k̂1
2k̂2k̂3 + 
k̂1k̂2

2k̂3 �109�

Since the system has only 4 equations, more linearly independent
equations are needed in order to complete the system. These ad-
ditional equations can be obtained by properly multiplying the
initial equations by the unknown variables. In this case, 6 addi-

tional equations have been obtained by multiplying:
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Fourth equation � m1 �110�

Fourth equation � m3 �111�

First equation � k3 �112�

Third equation � m3 �113�

First equation � m3 �114�

Second equation � m3 �115�

It is important to note that the newly introduced equations are not
linearly dependent on the original ones since the multiplicative
factors are the unknowns of the original system. The addition of
these new equations carries the appearance of new variables in the
system, namely

x7 = m3k3; x8 = m1m3k3; x9 = m3
2; x10 = m1m3

2 �116�

Ultimately, by considering all the equations, a system of 10 equa-
tions in 10 variables x1 ,x2 , . . . ,x10 is obtained. By adding these
new equations and variables, the original matrix H, of dimension
4�6, has been expanded to a 10�10 matrix with the following
properties

H5,1 = H4,6; H5,5 = H4,4 �117�

H6,2 = H4,6; H6,7 = H4,4 �118�

H7,5 = H1,1; H7,7 = H1,2; H7,8 = H1,3 �119�

H8,3 = H3,1; H8,9 = H3,2; H8,7 = H3,4; H8,8 = H3,5;

H8,2 = H3,6 �120�

H9,3 = H1,1; H9,9 = H1,2; H9,10 = H1,3 �121�

H10,3 = H2,1; H10,9 = H2,2; H10,10 = H2,3 �122�

H10,7 = H2,4; H10,8 = H2,5; H10,2 = H2,6 �123�

The matrix thus built represents a linear system of 10 equations in
10 unknowns: Hx=0. Having set x6=1 will make the trivial so-
lution x=0 not a possible one. Therefore, the nullspace of matrix
H cannot be empty and thus the determinant of H must be zero.
Matrix H depends solely on the parameter 
, therefore, it will be
possible to find the values of 
 that make the determinant zero
imposing det�H�=0. After lengthy manipulation, the determinant
of matrix H can be expressed as

det�H� = 
6�
 − k̂2��
 − k̂1 − k̂2�6�
 −
k̂2k̂1 + k̂1k̂3 + k̂2k̂3

k̂2 + k̂3



�124�

where it is clear that there are four distinct solutions for 
. Recall-
ing that 
=k2 as defined earlier, the first root, the trivial solution

=k2=0, does not yield a physically possible system. The second

root, 
=k2= k̂2, yields the actual solution for the stiffness k2. The

third root yields 
=k2= k̂1+ k̂2. However, from Eq. �90�, it was

found that k1+k2= k̂1+ k̂2, and so this root would imply that k1
=0. This solution does not yield a possible physical system either.
In absence of any other roots, the analysis would conclude that the
only physically possible solution corresponds to the second root


=k2= k̂2. Substitution of this equation in expression �90� yields

that k1= k̂1 and it can be shown that further substitution of these
values into the rest of the equations yields that all parameters of
both systems are equal. This would imply uniqueness of the solu-
tions, meaning that there is only one 3DOF structure that can be

represented by a given set of input-output measurements at the
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second floor. Any efficient identification algorithm should con-
verge to this solution. However, the existence of the fourth root

complicates the matter significantly since 
=k2= �k̂2k̂1+ k̂1k̂3

+ k̂2k̂3� / �k̂2+ k̂3� does indeed lead to a plausible physical solution
different from the actual one. In fact, substituting this value of k2
into the equations of the system will lead to

m1 =
m̂3k̂2

2

k̂2
2 + 2k̂2k̂3 + k̂3

2
�125�

m2 = m̂2 �126�

m3 = m̂1
k̂1

2k̂2
2 + 2k̂1

2k̂2k̂3 + k̂1
2k̂3

2 + 2k̂1k̂2
2k̂3 + 2k̂1k̂2k̂3

2 + k̂2
2k̂3

2

k̂1
2�k̂2

2 + 2k̂2k̂3 + k̂3
2�

�127�

k1 = k̂1 + k̂2 −
k̂2k̂1 + k̂1k̂3 + k̂2k̂3

k̂2 + k̂3

�128�

k2 =
k̂2k̂1 + k̂1k̂3 + k̂2k̂3

k̂2 + k̂3

�129�

k3 =
�k̂2k̂1 + k̂1k̂3 + k̂2k̂3�k̂2k̂3

k̂1�k̂2
2 + 2k̂2k̂3 + k̂3

2�
�130�

Such a set of masses and stiffnesses represents a physically plau-
sible structural system with the same input-output relation at the
second degree of freedom as the original one. Thus, for a 3DOF
system as in Fig. 3, two different solutions might be identified if
only the collocated input-output pair at the second floor is known.
One is the actual desired solution, the other is a misleading solu-
tion, corresponding to a different system which has the same
input-output transfer function at the second floor.

To illustrate these findings, let us consider the following nu-

merical example. Suppose that m̂1=1.1, m̂2=1.3, m̂3=0.85, k̂1

=11.0, k̂2=12.0, and k̂3=9.0. Equations �125�–�130� yield that
m1=0.2776, m2=1.3, m3=2.3690, k1=6.8571, k2=16.1429, and
k3=7.5473. The responses of both systems at all floors under a
known random force excitation at floor 2 are plotted in Fig. 4. It is
clear from the plot that the responses of both systems at floors 1
and 3 are different, while they cannot be distinguished at floor 2.
Therefore, if only the measurements at the second floor are
known, a unique identification will not be possible since there will
be 2 different systems that have the same input-output set at the
2nd degree of freedom but different responses at the other 2
DOFs.

Conclusions
In this paper, the global identifiability problem of a linear shear-

type N-degrees of freedom building structure has been tackled. It
has been shown that there are certain configurations of input and
output measurements that yield a unique solution for the identifi-
cation of mass and stiffness properties of the structure. These
proposed configurations require a minimum amount of sensors
�only one or two� and just one actuator. Fewer measurements, like
162 / Vol. 73, JANUARY 2006
in the case of only the collocated input-output pair at one single
degree of freedom, yield multiple solutions of identification as it
has been shown for the 3DOF system.

These results are especially useful to those identification meth-
ods, whose objective is to find a full order model solution with
only a reduced set of measurements. If the identification algorithm
is able to find the global optimum in a highly nonlinear optimiza-
tion landscape, the usage of the actuator/sensor configurations
proposed herein guarantees that one and only one possible physi-
cal solution exists.
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The effective compliance moduli of a plate with a doubly periodic
set of traction-free holes are considered. Attention is drawn to the
perturbation form in which they are expressed by applying the
complex variable methods in two-dimensional elasticity. This per-
mits one to derive specific dimensionless combinations of the ef-
fective moduli, which are independent of the solid Poisson ratio.
Using them saves computations of the structure moduli by FEM-
like methods and helps one to evaluate their practical accuracy.
Thus far, the only result of this kind has been observed numeri-
cally by Day, Snyder, Garboczi, and Thorpe (J. Mech. Phys. Sol-
ids. 40, pp. 1031–1051, 1992) and later proved by Cherkaev, Lu-
rie, and Milton (Proc. R. Soc. London, Ser. A 458, pp. 519–529,
1992). �DOI: 10.1115/1.1938202�

1 Local Structure Description
Consider a two-dimensional �2D� perforated structure that is

formed by replicating a basic polygonal cell over an �x ,y� plane in
two noncoinciding dimensions with the periods
�1 ,�2 : Im��2 /�1��0. The cell is supposed to contain only one
strictly centered interior hole with a smooth traction-free bound-
ary L and the volume fraction c�1. Let the cell be a square,
�2 /�1= i, and let the hole also have a square symmetry. This
corresponds to the simplest anisotropic model with only three dif-
ferent effective moduli: the bulk modulus Ke and two shear
moduli �e

�j�, j=1, 2.
At given cell geometry the effective moduli depend on the

solid-phase isotropic moduli K ,�, which are used in parallel with
the Young’s modulus E and the Poisson ratio �. This dependence
may be explicitly derived through the analytical Kolosov-
Muskhelishvili �KM� potentials ��z� ,��z�, z=x+ iy�S �1�, which
express the hole-distorted stress field in the solid phase S

��x,y� = ��xx,�yy,�xy� �1�
by automatically satisfying the equilibrium equations.
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Because of the stress field periodicity, ��z� ,��z� are written �2�
through more simple doubly periodic functions 	�z� ,
�z�:

��z� = D1z + D2�0�z� + 	�z� �2�

��z� = R1z + R2�0�z� − �0�z����z� + 
�z�; �0�z� �
F

�
��z� z � S

�3�

where F is the cell area and ��z� is the quasi-periodic Weierstras-
sian �, function �3�.

Physically, the constants D1 ,D2 ,R1 ,R2 are the quasi periods of
the local displacements in S2. They are linearly related to given
stress averages �angular brackets� over the cell

�Tr	 = ��xx + �yy	 = 2 Re�D1 + R2� �4�

�Dev	 = ��xx − �yy	 = 2 Re�D2 + R1� �5�

��xy	 = Im�D2 − R1� �6�
Together with the traction-free boundary condition along the hole
contour L

��t� + t̄���t� + ��t� = 0; t � L �7�
the loading conditions �4�–�6� form a uniquely solvable boundary
value problem for the potentials �2� and �3� by which the local
stresses and all the related quantities are then found.

An important point here is that the problem’s governing equa-
tions �4�–�7� involve no phase moduli K ,� and hence depend only
on the cell geometry. In particular,

Dj = Dj�L,c�, Rj = Rj�L,c�, j = 1,2 �8�
Though the KM approach is essentially limited to planar prob-
lems, it also works for a cylinder body infinitely elongated in the
axial direction. These states are referred to as plane stress and
plane strain, respectively. In either state all solid moduli, but �,
specifically differ from their three-dimensional �3D� counterparts
�1� and obey the following interrelations:

�/K = �1 − 2�� �plane strain�, �/K = �1 − ��/�1 + �� �plane stress�
�9�

4E−1 = K−1 + �−1�plain strain, plain stress� �10�

2 Stress-Strain Averages
The energy density W of the field �1� is written �see, for in-

stance, �4�� as a quadratic form

4W =
�Tr	2

Ke
+

�Dev	2

�e
�1� +

��xy	2

�e
�2� �11�

in the stress averages �4�–�6� The plate effective moduli
Ke ,�e

�1� ,�e
�2� in �11� are obtained as the cell harmonic means un-

der the unit loadings. Using the KM potentials we derive them in

a perturbation form �2�
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 1

Ke
� �

1

Ke
−

1

K
=

4A

E
; Tr = 1, Dev = ��xy	 = 0 �12�


 1

�e
�1�� �

1

�e
�1� −

1

�
=

4B1

E
; Dev = 1, Tr = ��xy	 = 0

�13�


 1

�e
�2�� �

1

�e
�2� −

1

�
=

4B2

E
; ��xy	 = 1, Tr = Dev = 0

�14�

The dimensionless coefficients A ,B1,2�0 describe the hole-
induced increments in the inverses of the local moduli K and �,
respectively. They are related to the quasi-periods in �4�–�6� by �2�

4 Re D1 − 1 = A, − 4 Re D2 = B1, 2 Im D2 = B2 �15�

To avoid confusion we note that A ,B1 ,B2 have been less aptly
introduced in �2� as A1 ,A2 ,A3. The different letters should stress
the relation to the different moduli.

For a dilute concentration of holes c�1, the increments are
proportional to the hole area �4�

A�c� = A0c + o�c�, B1,2�c� = B1,2
0 c + o�c� c → 0 �16�

In the opposite limiting case of c→1, perforated structures trans-
form to cellular solids, which are arrays of thin-walled elastic
squares with the asymptotics

A,B1 → c�1 − c�−1, B2 → 4c�1 − c�−3, c → 1 �17�
rigorously obtained by simple beam theory �7�.

Though seemingly simple, the increments cannot be found
without solving the full-scale elastostatic problem for the local
stresses �1�. In turn, this problem most likely has no closed-form
solution, apart from the equistress hole shapes L0 �4�, which pro-
vide the global minimum for the bulk-related increment A at given

Fig. 1 The combined increment H1,2„c… from „2
and H1„c… ,H2„c… for the equistress hole „2 and
extrapolate the computed results up to the cel
„16… are borrowed from †15‡.
volume fraction c
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A�c,L�→
�L�

min = A�c,L0� =
c

1 − c
, ∀ c � 1 �18�

3 Analytical Conclusions
In the absence of analytical solutions to the stress-strain prob-

lem, the closed-form relations, such as �18�, are valuable in veri-
fying the numerical results. Three other useful identities of this
kind immediately follow from �8� and �15� which show the inde-
pendence of the increments and the local moduli. With �9� and
�10� this equivalently implies an explicit dependence of the rela-
tive effective moduli on the solid Poisson ratio

Ke

K
= 
1 + 2A

1 − �

1 − 2�
�−1

,
�e

�j�

�
= �1 + 2Bj�1

− ���−1; �plane stress� �19�

Ke

K
= 
1 +

2A

1 − �
�−1

,
�e

�j�

�
= 
1 +

2Bj

1 + �
�−1

; �plane strain�

�20�

E
 1

�e
�j� −

1

�
� = Bj�c,L,�; j = 1,2 �the both� �21�

Combining also �10� with either of the above-obtained relations,
we get that the relative Young’s moduli of a perforated structure
are independent of the solid Poisson ratio

Ee
�j�

E
= 1 + A + Bj, j = 1,2 �22�

First found numerically in �5� for j=1, this remarkable feature
was later derived analytically in �6� from quite different consider-
ations. However, to our best knowledge, the separate relations

in a square lattice: H1„c… for a square hole „1…
, respectively…. The dotted segments visually
ar limit c=1. The required dilute limits A0 ,B1,2

0

4…
3

lul
�19� and �20� have not yet been reported in the literature.
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Along with �22�, the cell energy increment multiplied by the
solid Young’s modulus is also independent of the phase moduli

E�W� = A�Tr	2 + B1�Dev	2 + B2��xy	2 �23�
In view of �16� and �17� the ratios �19�, �20�, and �23� tend to zero
with c→0 and to infinity with c→1. Contrastingly, the following
�-independent combination

Hj�c,L� �

 1

Ke
� − 
 1

�e
�j��

c
1 +
1

Ke
+

1

�e
�j�� =

Bj − A

c�1 + A + Bj�
; j = 1,2

�24�
has a finite cellular limit and a nonzero dilute limit

lim
c→0

Hj�c,L� = Bj
0�L� − A0�L�, lim

c→1
Hj�c,L� = j − 1, j = 1,2

�25�

All the results obtained equally hold for a macroisotropic ��e
�1�

=�e
�2�� hexagon lattice: �2 /�1=exp�2i� /3� when �8�

A → c�1 − c�−1, B1 = B2 → 3c�1 − c�−3/2, c → 1 �26�

4 Numerical Implications
Potential-related identities �19�–�21� reduce the problem of

computing the effective moduli to finding the �-independent in-
crements �12�–�14� or, equivalently, the quasi-periods from �2�
and �3�. In parallel with the series expansions of the functions 	�z�
and 
�z�, they may be calculated from the infinite system of linear
algebraic equations. For smooth hole shapes the system coeffi-
cients are routinely derived using the complex variable technique
as exemplified in �9�. Specifically, they take a closed form for a
circle of radius r centered at a point a

t̄ − ā = r2�t − a�−1; t � L �27�
�see �10� and more advanced recent results in �11��.

Nonsmooth contours are more amenable to finite element meth-
ods �FEM�, which find the effective moduli by directly solving the
stress-strain relations in a meshed cell with given solid constants
under periodic boundary conditions �12�. The explicit � dependen-

Table 1 The effective bulk modulus and the related quantities
for a square honeycomb at c=0.9 †12‡

� Ke /K A me�Ke� �%� A�%�

−0.95 0.07521498 9.1426024 0.021 0.00145
−0.90 0.07458332 9.1426069 0.021 0.00140
−0.80 0.07321184 9.1426060 0.021 0.00141
−0.70 0.07167391 9.1426435 0.021 0.00100
−0.60 0.06993791 9.1426479 0.021 0.00095
−0.50 0.06796250 9.1426645 0.021 0.00077
−0.40 0.06569467 9.1426725 0.022 0.00068
−0.30 0.06306418 9.1426843 0.022 0.00056
−0.20 0.05907645 9.1426843 0.022 0.00031
−0.10 0.05630105 9.1427226 0.023 0.00014

0.00 0.05185260 9.1427180 0.023 0.00019
0.10 0.04635822 9.1427322 0.024 0.00003
0.20 0.03940013 9.1427351 0.024 0.00000
0.30 0.03030352 9.1427048 0.026 0.00033
0.40 0.01790323 9.1426405 0.027 0.00104
0.45 0.00984560 9.1425648 0.030 0.00186

the maximum A+ 9.1427351
the cellular approximation �17� 9.0
cies �19�–�21� remain outside of this numerical scheme and hence
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may estimate its computational error through the relative devia-
tions in the increment value, which should be found independently
for at least two different Poisson ratios. The deviations are mea-
sured from the sample maximum since the FEM calculations yield
a conservative result for the moduli inverses �12�

A�%� = 100
A− − A���

A− , A+ = max��A���� �28�

Bj�%� = 100
Bj

+ − Bj���
Bj

+ , Bj
+ = max��Bj����, j = 1,2

�29�

A good case in point is provided by �13� where the plain-strain
ratios Ke /K and �e

�1� /� from �19� for a square honeycomb are
computed by FEM simulation over a wide range of c and � with
the results error meA�%� ,meB1�%� evaluated through the
Zienkiewicz-Zhu error estimator �ZZEE� �14�.

At each given c we use these results to obtain a set of the
increment values A ,B1 slightly varying with � as exemplified in
Tables 1 and 2 for the case of c=0.9 near the cellular limit. It is
seen that the increment related error tolerances are much lesser
than those obtained by ZZEE. It gives good reason to think that
the actual accuracy in �12� is orders better.

In Fig. 1 we finally combine their results with ours �9� to dis-
play the curves H1.2�c� for two different hole shapes.
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The propagation of longitudinal elastic waves in quasi one-
dimensional structure consisting of harmonic oscillators periodi-
cally jointed on a slender beam is studied. Sub-frequency locally
resonant band gap with highly asymmetric attenuation is observed
in both theoretical and experimental results, and both results
match well. The stiffness and mass ratios are found analytically as
two factors that influence the actual attenuation in the band gap
of the locally resonant phononic crystals. The study on the weights
of the two factors shows that the stiffness ratio is the key one.
Thus, the reason for the mismatch between the regions of the
sharp attenuation and the theoretical band gap in the locally reso-
nant phononic crystals is discovered. �DOI: 10.1115/1.2061947�

1 Introduction
The theory of wave propagation in periodic structures was de-

veloped by solid state physicists and electrical engineers several
decades ago �1,2�. Periodic structures act as a filter for traveling
waves of any kind whether they are electromagnetic, acoustic,
bending among others �3�. This principle can be used to reduce
the vibration level in one part of a structure when it is excited at
another. Numerous works have been devoted to the study of the
continuous periodic engineering structures �3–6�.

These works have enlightened the study of the elastic/acoustic
wave propagation in phononic crystals �PCs� composed of artifi-
cial periodic elastic structures, which has received a great deal of
attention �7–18� in recent years. The emphasis was laid on the
existence of complete elastic/acoustic band gaps within which
sound and vibrations are all forbidden. This is of interest for ap-
plications such as elastic/acoustic filters, improvements in the de-
sign of transducers, noise control and vibration shield; as well as
for pure physics concerned with the Anderson localization of
sound and vibration �12�.

The low frequency band gap of PCs with small dimension is
crucial to applications in low frequency sound or vibration shel-
ters. Conventional PCs controlled by the Bragg reflection mecha-
nism can hardly reach the requirement because the wavelength of
low frequency elastic wave in common solids is long �13�. This
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would bring on structures with the size of outdoor sculptures in
order to prevent environmental noises �8�, or with bigger size for
the vibration shielding in common machines.

Liu et al. advanced in their pioneering work �7� the locally
resonant �LR� mechanism of band gap in researching the three-
dimensional �3D� PCs consisting of cubic arrays of coated spheres
immersed in an epoxy matrix. They also constructed simple cubic
3D PCs with lattice constant of 1.55 cm and sharp attenuation at
the frequency around 400 Hz. Similar work by Goffaux et al. �9�
shows that narrow attenuation with low frequency also exists in its
two-dimensional �2D� counterpart, the array of coated cylinders in
epoxy. The actual attenuation in these locally resonant band gaps
is too narrow to be used as low frequency sound or vibration
shelters.

The mechanical analog composed of lumped masses jointed by
massless springs in the works �9,10� of Goffaux is introduced in
order to get a physical insight into the LR mechanism. A similar
model has also been proposed recently by us in the study of the
2D binary LR PCs �14�. The study has motivated the work in this
paper. As the LR PCs can be simulated with simple analog models
such as Kelvin’s in textbooks �1�, such models can also be used to
study the attenuation property in it. Therefore, the quasi-one-
dimensional LR PCs composed of a continuous slender beam with
periodically jointed harmonic oscillators is studied in order to find
the key factor that influences the attenuation property in the band
gap of the LR PCs, which is necessary in the improvements of the
original sharp attenuation spectra as well as the design of the LR
PCs.

2 Theory
Figure 1�a� illustrates a continuous elastic beam with periodi-

cally attached oscillators, i.e., the quasi-1D LR PC. The Young’s
module, density and cross-section area of the slender beam is E, �,
and A, respectively. The stiffness and mass of each oscillator are k
and m. The regular interval of the oscillators is Lx, i.e., the lattice
constant.

Using the well-known transfer matrix method �13� and the
Bloch theorem �16,19�, the solution for the longitudinal elastic
wave in the infinite periodic structure is clearly

cos�±�� = cosh�±�� = cos��Lx� −
km�2

2�c2�A�k − m�2�
sin��Lx�

�1�

where � is the angular frequency of the wave, �=� /c is the
longitudinal wave number of the uninterrupted uniform beam at
frequency �, and c= �E /��1/2 is the velocity of longitudinal elastic
wave in the beam, � and � are the attenuation and phase constants
�6�, respectively.

For a finite sample consisting of N periods, the transmission
factor is also needed, besides the attenuation and phase curves of
infinite system. It can also be calculated with the transfer matrix
method �13�.

3 Theoretical and Experimental Results
Figure 2�a� illustrates the calculated attenuation and phase con-

stants � ,� of a quasi-1D LR PC illustrated in Fig. 1�b� with lattice
constants Lx=0.05 m, which is composed of a slender organic
glass beam �with parameters of A=50�10−6 m2, E=1.5
�1010 Pa, and �=1200 kg m−3� and the same harmonic oscilla-
tors periodically jointed on it. Each oscillator is composed of a
pair of steel slices �act as a spring� and masses. They are set
symmetrically on the beam in order to counteract the torsions. The
stiffness and mass of the oscillators are k=5.12�106 N·m−1 and
m=47.6 g. The accessional mass of the joints connecting the steel
slices with the beam per period mjoint=16 g. The frequency is
given in the normalized unit �Lx /2� on the upper abscissa com-
pared with that in Hz on the lower abscissa. The transmission

frequency response function �FRF� of a finite sample with eight
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periods is also calculated and illustrated as dashed lines in Fig.
2�b�. The attenuation region �also called the band gap� settles
between 1584 and 3047 Hz �from 0.0564 to 0.1084 in the normal-
ized unit�. They are about 1 /10 and 1/5 of that controlled by the
Bragg reflection mechanism, which ordinarily locate near 0.5 in
the normalized frequency.

In order to validate the theoretical model, vibration experiments
on the laboratory model shown in Fig. 1�b� are performed. In the
experiment, the white noise signal is generated and fed to the
vibration shaker through the power amplifier, which transmits vi-

Fig. 1 „a… Quasi-one-dimensional phononic crystal composed
of infinitely extended continuous slender beam with periodi-
cally jointed harmonic oscillators. We consider the longitudinal
waves propagating along x direction. „b… The actual sample of
the quasi-one-dimensional phononic crystal with eight periods
and the experimental instruments.

Fig. 2 „a… Calculated attenuation and
PCs illustrated in Fig. 1„b… for several
ized units �Lx /2� and Hz on the uppe
Measured „solid line for the sample w
six periods… and calculated „dashed
transmission frequency response fun
figure illustrates a zoom from 1500 to

tion the eight peaks corresponding to th
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brations to the test sample across an accelerometer. The elastic
waves propagate through the sample, and the acceleration on the
right of the beam is measured with another accelerometer. Two
samples of different period number N=6 and 8 are measured. The
measured results are illustrated in Fig. 2�b� compared with the
calculated ones, where good agreement can be found and highly
asymmetric attenuation in the band gap is observed. As to the
measured transmission spectra, the peaks corresponding to the
natural frequencies in the calculated results are erased by the
damping in the beam and submerged in the measurement noise.
The random noise in the measured curves below −50 dB origi-
nates in the limit of the signal noise ratio of the experimental
setup. The viscoelastic of the organic glass beam results in addi-
tional attenuations at higher frequencies.

4 Discussion
For the attenuation constant and transmittance spectra illus-

trated in Fig. 2, we can observe highly asymmetric attenuation in
the band gap. The maximal attenuation, which corresponds to the
resonant eigenfrequency �1651 Hz� of the oscillators, locates near
the lower edge �1584 Hz� of the band gap. When the frequency
rises from it, the transmittance factor rises sharply at first �also
observed in the 2D/3D LR PCs �7,10,11�� and slowly whereafter.
This is obviously different with that of a band gap controlling by
the Bragg scattering mechanism, where the maximal attenuations
always locate near the mid-gap frequency. As the attenuation con-
stant in the band gap represents the attenuation per period, it is an
impersonal description of the band gap attenuations of the LR

ase constants � ,� of the quasi-1D LR
uencies that are given in the normal-
nd lower abscissas, respectively. „b…
eight periods, and dots for that with

e for the sample with eight periods…
n for this quasi-1D LR PC. The sub-
0 Hz in order to give a clear descrip-
ph
freq
r a
ith
lin
ctio
160
e natural frequencies.
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PCs. When it is too small at the mid-gap, the transmission FRF in
the band gap of a finite LR PC will become only a sharp attenu-
ation near the resonant eigenfrequency.

For simplicity, the resonant eigenfrequency of the oscillator is
considered as the frequency on the lower edge of the band gap.
Given M as the mass of the beam per period, the band gap fre-
quency range is �14�

� k

m
� � �� k

m
�1 +

m

M
� �2�

Thus

� =� k

m
�1 + �p − 1�	�, �p 
 1,0 � 	 � 1� �3�

where p=�1+m /M, and 	 is a linear factor stands for the nor-
malized position in the band gap.

As the normalized frequency �Lx in the LR band gap is very
small, the following approximations can be taken for simplicity:

cos��Lx� � 1, sin��Lx� � �Lx �4�
Inserting Eqs. �3� and �4� into Eq. �1�, we have the analytical
description of the attenuation constants in the LR band gap as

cosh��� � 1 + 2
k

K
	1 −

1

�1 + �p − 1�	�2
−1

�5�

where K=ES/Lx is the equivalent stiffness of the beam in a pe-
riod.

When 	=0.5, the mid-gap attenuation constants �mid can be
described with

cosh��mid� � 1 + 2
k

K
�1 −

4

�1 + p�2�−1

�6�

From Eqs. �5� and �6�, it is obvious that for a specific normal-
ized position 	 in the band gap, the attenuation is in the direct
ratio with the stiffness ratio k :K and in the inverse ratio with the
mass ratio m :M. In order to find the weights of the two factors
corresponding to the LR PCs, we studied the partial derivative of
cosh��mid� on the stiffness ratio k :K and the mass ratio m :M for
several mass and stiffness ratios in Fig. 3. The stiffness ratio has
much greater weight than the mass ratio in affecting the mid-gap
attenuation of the LR PCs. Therefore, except for some occasions
with very low mass ratio, the influence of the mass ratio on the
mid-gap attenuation can be ignored. As the attenuation constant is
analytically described with Eq. �5�, there exists no direct relation
between the attenuation in the band gap and other parameters,
such as the mid-gap frequency or width of the band gap.

When the stiffness of the beam �corresponding to elastic con-

Fig. 3 The partial derivative of cosh
line… and the mass ratio m :M „lower lin
ratios
stants of the hosting� is much bigger than that of the spring �cor-

Journal of Applied Mechanics
responding to elastic constants of the coating�, the mid-gap attenu-
ation in the band gap will be too small to be observed. In other
words, as the stiffness ratio decreases the band gap attenuation
tends to vanish because the system tends to be no longer periodic.
This is the reason why there exists only a sharp attenuation near
the eigenfrequency of the oscillators in the 2D or 3D LR PCs,
while their corresponding theoretical band gaps are much wider.

5 Conclusion
In conclusion, we have studied the propagation of longitudinal

elastic waves in quasi-one-dimensional locally resonant phononic
crystals consisting of harmonic oscillators periodically jointed on
a slender beam. Sub-frequency band gap with highly asymmetric
attenuation is observed in theoretical and experimental results,
and both results matches well. The two factors that influence the
actual attenuation in the band gap of the locally resonant phononic
crystals are found analytically, and the weights of them is studied.
Thus, the reason for the mismatch between the regions of the
sharp attenuation and the theoretical band gap in the locally reso-
nant phononic crystals is discovered. These results will facilitate
the design of the low frequency sound/vibration shelter with the
idea of the phononic crystals.
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Modeling Flow of a Biviscous Fluid
From Borehole Into Rock
Fracture

A. Lavrov
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Flow of bi-viscous fluid, i.e., non-Newtonian fluid with the shear
stress versus shear rate function composed of two straight seg-
ments, from a borehole into a nonpropagating deformable hori-
zontal fracture of circular shape was modeled within the lubrica-
tion approximation. The volume of the fluid lost into the fracture
was found to be an almost-linearly decreasing function of the fluid
yield stress and a linearly increasing function of the borehole
pressure, under assumption of linear fracture deformation law.
The model developed serves as a first approximation of mud loss
during drilling of low-permeability naturally fractured
rocks. �DOI: 10.1115/1.2061927�

Introduction
Drilling naturally fractured rocks in overbalance, i.e., with

borehole pressure exceeding the reservoir fluid pressure, is ac-
companied with losses of drilling fluid. The main reason for this
drilling problem in low-permeability formations is the presence of
natural fractures that can extend sometimes over hundreds and
thousands of meters. A solid understanding of fluid loss mechanics
is necessary for an appropriate drilling fluid design. Such under-
standing is also required when fluid loss measurements are used
for reservoir characterization purposes �1,2�.

Bingham fluid flow from borehole into a single nondeformable
fracture �constant aperture case� was modeled in Ref. �3�. Fluid
flow of Newtonian fluid into a deformable fracture was investi-
gated in Ref. �4�. Non-Newtonian power-law fluid flow into a
deformable fracture was studied in Ref. �5�. Non-Newtonian
Bingham rheology is typical for most types of drilling fluids cur-
rently in use.

Here, flow of a bi-viscous fluid into a deformable fracture is
investigated theoretically. Under bi-viscous fluid, we mean a non-
Newtonian fluid having the shear stress versus shear rate function
composed of two straight segments. As discussed in Refs. �6,7�, a
bi-viscous model with a large viscosity ratio can serve as a real-
istic approximation for the Bingham rheology. Using bi-viscous
instead of Bingham model allows the shear stress versus shear rate
dependency to be continuous, which facilitates numerical solu-
tion. Besides, and perhaps most important, the flow of bi-viscous
fluid in a narrow channel is much better understood, i.e., the ques-
tion about hard core formation in such flow is unambiguously
answered negatively in this case. Other, more complicated fluid
rheologies, e.g., Herschel-Bulkley fluid, were not considered in
the present work since many real drilling fluids are well described
by Bingham or bi-viscous model.

Governing Equations; Boundary and Initial Conditions
A horizontal disk-shaped fracture of radius rext located in an

impermeable rock mass is considered. Initially, the fracture is
fully saturated with a liquid under the static reservoir pressure, p0.
A simplified fracture deformation law is adopted, namely: Frac-
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ture aperture w in each point is assumed to be a linear function of
fluid pressure, p, inside the fracture: w=w0+ p /Kn, where w0 is
the fracture aperture when the fluid pressure is zero; Kn is the
normal fracture deformation modulus. The initial fracture aperture
is thus equal to w0+ p0 /Kn. The assumed local linear relation be-
tween fluid pressure and fracture aperture is a large simplification.
During further development of the model, more realistic nonlinear
and nonlocal deformation laws �8� should be allowed. However,
as a first approximation, linear fracture deformation seems an ac-
ceptable assumption.

At time t=0, a vertical borehole of radius rw intersects the
fracture in its center. The borehole axis coincides with the z axis
of the cylindrical coordinate system. Cylindrical coordinate r de-
notes the distance in the fracture plane from the borehole axis. All
properties of the fluid coming from the borehole are assumed to
be identical to those of the reservoir fluid being originally in the
fracture, thus neglecting fluid displacement effects. Based on Ref.
�7�, bi-viscous fluid rheology can be described in one-dimensional
form as follows:

� = �0�̇ for ��̇� � ��̇c�
�1�

� = �y + �1�̇ for ��̇� � ��̇c�

where � and �̇ are shear stress and shear rate, respectively; �0 , �1
are dynamic fluid viscosities at low and high shear rates, respec-
tively; �y is a constant, further termed “yield stress;” �̇c=�y / ��0
−�1�.

After being penetrated by the borehole, fluid pressure at r=rw
linearly increases from p= p0 to p= pw during 1 s, and then stays
constant and equal to pw. At r=rext, no flow in r direction is
assumed, i.e., �p /�r=0. The latter type of boundary condition is a
standard one in hydraulic fracture modeling, e.g., Ref. �8�. The
problem of fluid loss during drilling is characterized by a much
lesser pressure difference between the fracture and the formation
than is the case in hydraulic fracturing problems. The assumption
of zero fluid flow through the fracture tip is thus realistic. Stress
conditions at infinity are assumed such that the fracture does not
propagate.

Assume the fracture surfaces are smooth enough for the lubri-
cation approximation to be valid. Applying momentum conserva-
tion and no-slip conditions on the surfaces, the fluid average ve-
locity, �v�, at a distance r from the borehole axis is obtained as
follows

�v� = −
w2

12�0

�p

�r
for z0 � w/2 �2a�

�v� = −
w2

12�1

�p

�r
+ �wz0

4
−

z0
3

3w
	�0 − �1

�0�1

�p

�r
for z0 � w/2

�2b�
where

z0 = 
 �0

�0 − �1

�y

�p/�r

 .

Mass conservation equation is given by

�

�r
�w�v�� +

1

r
w�v� +

�w

�t
= 0 �3�

Although the rheological drilling fluid model and the fracture de-
formation law employed are quite simple, the strong nonlinearity
of the resulting governing equation motivates the use of numerical
solution. Equation �3� was solved using an explicit second-order
finite-difference scheme with a time step of 0.00001 s to obtain
the fluid loss rate from borehole into the fracture given by the
value of �2�rw�v�� at r=rw, as a function of time. The so calcu-
lated flow rate corresponds to the difference between flow-in and

flow-out measured by flowmeters during drilling.
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Modeling Results
Simulation results are presented in Fig. 1 for the following set

of parameters: rw=0.1 m; rext=10 m; p0=20 MPa; pw=25 MPa;
w0=0.1 mm; Kn=5·104 MPa/m; �0=40 Pa·s; �1=0.04 Pa·s, the
ratio �0 /�1 being 1000 as suggested in Ref. �7� for an approxi-
mation of a Bingham fluid. Target time of 2000 s was used in both
simulations shown in Fig. 1, although only the first 50 s are shown
in order to highlight the fluid loss dynamics at this early stage. As
Fig. 1 demonstrates, fluid loss dynamics is affected by the yield
stress value at the very beginning �t�40 s�. This effect also be-
comes clear from the dependency of the total volume of fluid lost
during the time interval from t=0 to t=2000 s on the yield stress
�Fig. 2�. As Fig. 2 indicates, the total volume of the lost fluid
decreases virtually linearly with yield stress, in the range of yield
stresses examined. It should be noted that this range of yield stress
values is typical of drilling fluids.

The shape of the flow rate versus time curve obtained from the
simulations �rapid increase in the beginning and a subsequent

Fig. 1 Fluid loss dynamics for two fluids: Newtonian „yield
stress 0… and non-Newtonian bi-viscous „yield stress 10 Pa….
Values of other parameters are the same for both curves and
are given in the text.

Fig. 2 Total volume of fluid lost within the first 2000 s as a
function of the fluid yield stress. Values of parameters are

given in the text.
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gradual decrease, Fig. 1� is qualitatively the same as the shape of
corresponding curves obtained during field measurements while
drilling in naturally fractured formations �1�. Varying parameters
of the model might allow us to fit the observed data exactly.
However, such validation would be appropriate only if geological
conditions and mechanical properties of the rock in the reported
field studies were documented in detail, to impose constraints on
the possible values of the model’s input parameters. Also, inde-
pendent measurements of fracture parameters are required to
verify the performance of the model against real-world data.

The model allows an estimation of the effect different forma-
tion properties and operational parameters have on fluid loss dy-
namics in fractured reservoirs. Of utmost interest from practical
viewpoint is the effect of borehole pressure, determined by drill-
ing fluid composition �mud weight�. Four simulations, for bore-
hole pressure values of 22 MPa, 24 MPa, 26 MPa, and 28 MPa,
were conducted. A comparison between two of them �22 MPa and
26 MPa� is presented in Fig. 3. The rheological parameters of the
fluid are the same for both curves in Fig. 3, i.e., �0=40 Pa·s;

Fig. 3 Fluid loss dynamics for two borehole pressure values,
22 and 26 MPa. Values of other parameters are the same for
both curves and are given in the text.

Fig. 4 Total volume of fluid lost within the first 2000 s as a
function of borehole pressure. Values of other parameters are

given in the text.

Transactions of the ASME



�1=0.04 Pa·s; �y =5 Pa. Other parameters have the same values
as in Fig. 1. As Fig. 3 indicates, the borehole pressure strongly
affects the initial peak of the fluid loss curve and virtually does
not affect the duration of the “tail.” The total volume of fluid lost
into the fracture within the time interval from t=0 to t=2000 s
increases linearly with the borehole pressure �Fig. 4�, which has to
be attributed to the assumed linear fracture deformation law.

Conclusions
Flow of a non-Newtonian drilling fluid from a borehole into a

nonpropagating fracture was modeled under the assumptions of
linear fracture deformation �opening� and bi-viscous fluid rheol-
ogy. The volume of the fluid lost into the fracture was shown to be
an almost-linearly decreasing function of the fluid yield stress and
a linearly increasing function of the borehole pressure. The model
can be used in order to optimize drilling regime in naturally frac-
tured reservoirs. It can also provide an aid when using mud loss
data for formation characterization purposes.
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This paper is devoted to the homogenization of a nonlinear one-
dimensional problem as a particular case of laminated composite
and its solution by a Wavelet-Galerkin method. This approach is
an extension of this method to nonlinear problems. Theoretical
results are given and numerical examples are presented.
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1 Introduction
Many problems of structural analysis are concerned with het-

erogeneous media. Theoretical approaches are necessary because
of the impossibility to solve numerically real problems, even for a
nonlinear behavior. In this paper we are interested in the compu-
tation of the effective properties for a periodic heterogeneous me-
dia in a special type one-dimensional no-linear elasticity. The fol-
lowing theory can be applied to laminated composites �see Fig. 1�
usually used in civil engineering, aircrafts design and for certain
applications to ultrasonic transducers. The idea is to consider the
material as being a juxtaposition of identical cells, with identical
geometrical and mechanical properties. So by multi-scale
asymptotic expansion methods it is possible to obtain homog-
enized equations depending on nonlinear problems on the micro-
structure and on the global scale. These problems can be solved
analytically in one dimension but it is necessary to introduce ef-
ficient solvers for two- or three-dimension problems. In the last
decades many authors have tried to develop different numerical
methods in order to solve the local and global problems, for in-
stance the finite element method �1�, Fourier transform �2�, and
wavelet transform �3�. In this paper a Wavelet-Galerkin method is
introduced in order to solve the local and global nonlinear prob-
lems in one dimension. The advantages of this method are: �i�
there is no creation of mesh contrary to the finite element method,
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�ii� there is no Gibbs phenomena contrary to the Fourier trans-
form, and �iii� the intrinsic adaptivity of wavelets.

The paper is organized as follows: in Sec. 2, we present the
one-dimensional nonlinear elastic problem. Section 3 is devoted
to the homogenization of the problem. Section 4 is devoted to the
numerical solution by a Wavelet-Galerkin method �Wavelet-
Element method�. Finally, Sec. 5 contains some numerical ex-
amples with two or three types of materials.

2 A One-Dimensional Nonlinear Problem
Let us consider a nonhomogeneous thin bar of length L under

the action of volume forces f�x�. This bar is supposed to model a
laminated composite where the length of each stripe is smaller
than the perpendicular direction as shown in Fig. 1. The displace-
ment problem of such a bar is given by the following one-
dimensional elliptic equation

d

dx
F�x,

du

dx
� + f�x� = 0 �1�

together with the boundary conditions

u�x=0 = u0, F�x,
du

dx
��

x=L

= S0 �2�

where F : �0,L��R→R, f : �0,L�→R and u : �0,L�→R.
We assume that the bar is a composite material with periodic

structure. For instance, the bar is composed of p ·n smaller bars
made of p different homogeneous materials �see Fig. 2�. The p
materials form a periodic cell of length l and it is supposed that
l�L �equivalent to n�1�. Under these conditions, the relation
between the stress and the strain, given by the map F, is a peri-
odic one in the spatial variable x, then

��x� = F�x,
du

dx
� = F��x,

du

dx
�, � = 1,…,p �3�

for all x in the � small bar of the periodic cell. We also suppose
that the nonlinear constitutive relation �3� is invertible. Let l�, �
=1,… , p be the length of the �th bar in the periodic cell, then

l = �
�=1

p

l� �4�

and together with the boundary conditions �2� we have the conti-
nuity conditions �u�=0 and ���=0 at the joints of the rods, i.e., at
points xi

�. Here xi
�= �i−1� · l+�m=1

� lm for i=1,… ,n, �=1,… , p
and �·�	x=xi

� means the difference between the left and right limits

at the point xi
�. Equation �1� together with boundary conditions

�2�, the continuity and conjugation conditions form a typical prob-
lem of heterogeneous nonlinear elasticity theory.

3 Homogenization of the Problem
The homogenized equation corresponding to Eq. �1� can be

derived by the method of multi-scale asymptotic expansions. In
the present problem, there are two natural spatial length scales,
one measuring variations within the periodic cell and the other
measuring variations within the whole bar. For this reason, we
introduce a new variable �=x /�, where � is a small parameter
related to the periodic structure of the material. The variable � is
called the fast variable in relation with x, which is the slow vari-
able.

We define now the functions F��x , · � , u��x�, and ���x� by

F��x, · � = F� x

�
, ·� = F��, · �, u��x� = u� x

�
� = u��� ,
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���x� = F��x,
du

dx
�

and consider the problem

d

dx
F��x,

du�

dx
� + f��x� = 0 �6�

	u�	x=0 = u0, F���x,
du�

dx
��

x=�L

= S0 �7�

	�u��	x=�xi
� = 0, i = 1,…,n − 1, � = 1,…,p,

	�u��	x=�xn
� = 0, � = 1,…,p − 1 �8�

	����	x=�xi
� = 0, i = 1,…,n − 1, � = 1,…,p,

	����	x=�xn
� = 0, � = 1,…,p − 1 �9�

where f��x�= f�x /��. The parameter � is properly chosen in order
to make the function F� 1-periodic in �. We search a solution of
Eqs. �6�–�9� with the aid of the following two-scale asymptotic
expansion of the unknown function u�

u��x� = v�x� + �u1�x,�� + �2u2�x,�� + �3u3�x,�� + … �10�

This means that the total dependence on x is obtained directly and
through the variable �. For an explanation of the physical meaning
of the expansion �10� and some other interesting considerations
see Ref. �4�. We substitute Eq. �10� into Eq. �6�, use the chain rule
and make an expansion of F� in a Taylor series �4�. After some
manipulations equations for orders −1, 0, and 1 are obtained. Fi-
nally, we obtain local problems �4,5� �LP� for the calculation of
the functions v�x� and ui�x ,��, i	1. For simplicity, we only deal
with the problems for the calculation of the functions v�x� and
u1�x ,��. Suppose there exists a 1-periodic solution u1�x ,�� of the
following nonlinear local problem �LP0� where v��x� is treated as
an independent parameter.

Fig. 1 A laminated composite: the length in directions x1 and
x2 is small with respect to the length in direction x3

Fig. 2 The periodic structure of the heterogeneous bar for p

=3

Journal of Applied Mechanics
LP0:

�

��
F��x,v��x� +

�u1

��
�x,��� = 0 �11�

u1�x,0� = 0 �12�

�u1�x,���	x=xi
� = 0, 1 
 i 
 p − 1, 1 
 � 
 p ,

�13�
�u1�x,���	x=xn

� = 0, 1 
 � 
 p − 1

�
F��x,v��x� +
�u1

��
�x,�����

x=xi
�

= 0, 1 
 i 
 p − 1, 1 
 � 
 p

�14��
F��x,v��x� +
�u1

��
�x,�����

x=xn
�

= 0, 1 
 � 
 p − 1

It follows that u1 depends on x through v��x�, in other words
u1=u1�v��x� ,��. Once u1 is known the solution of the recurrent
sequence problems are provided u2�x ,�� ,u3�x ,�� ,… . Since u1
=u1�v��x� ,�� we can write

d

dx
F̂��v��x�� − f̂��x� = 0 �15�

where

F̂��v��x�� ª �F��x,v��x� +
�ui

��
�x,��� ,

�16�

f̂��x� ª �f��x�� and �·� ª�
0

1

· d�

The last integral is called the one-dimensional average operator.
By definition v�x� is a continuous function, then the continuity
conditions are obviously satisfied. The averaged problem �AP� of
the original problems �1� and �2� is AP

d

dx
F̂�v��x�� − f̂��x� = 0 �17�

v�0� = u0, F̂�v��x��	x=L = S0 �18�

where we define

F̂�y� ª �F��,y +
��

��
��,y�� �19�

As a consequence of LP0 we have

F̂��v��x�� = F��x,v��x� +
�u1

��
�x,��� �20�

Thus what we need for the construction of the averaged equation
�17� is to solve problem LP0 and to use Eq. �20� for stating

F̂��v��x��. The normal approach is as follows. We consider the
following parametric problem �PP� depending on parameter y

PP0�y�:

�

��
F��,y +

��

��
��,y�� = 0 �21�

��0,y� = 0 �22�

����,y��	�=�i
� = 0, 1 
 i 
 p − 1, 1 
 � 
 p ,

�23�
����,y��	�=�� = 0, 1 
 � 
 p − 1
n
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¯

�
F��,y +
��

��
��,y����

�=�i
�

= 0, 1 
 i 
 p − 1, 1 
 � 
 p

�24��
F��,y +
��

��
��,y����

�=�n
�

= 0, 1 
 � 
 p − 1

From the definitions �5� and from the statement of the problem
LP0 it is clear that the solution u1 of LP0 satisfies

u1�x,�� = ���,v��x�� �25�

where ��� ,y� is the solution of PP0�y�. Therefore, we solve
PP0�y� for the construction of the averaged equation and define

F̂�y� from Eq. �19�.

4 Numerical Solution by the Wavelet-Element Method

4.1 General Algorithms. As proposed in former papers �3,6�,
to solve problems PP0 and AP we use the compactly supported
wavelets introduced by Daubechies �7� and particularly the Haar
basis. These bases are classical bases of L2�R� and are defined
from the data of a function � called the scaled function and a
function , orthogonal to the first one called the associated wave-
let. In this paper, we have chosen the classical Haar basis. In the
following the unknowns of problems PP0 and AP are approxi-
mated in a finite space VJ �J be given�. A function f is decom-
posed in this space on the form

f = �
k��0

f0k�0k + �
j=0

j=J

�
k��j

f jk jk �26�

where � j = �0,2 j −1�. The local problem PP0�y� takes on a vecto-
rial form �discretized nonlinear system�

NLS0�y�: Find �̄J such that Gy��̄J�=0

�̄J= �� jk� j0
j
J,k�� j
is the vector built from the wavelet coeffi-

cients of �. Gy��̄J� is a nonlinear vectorial function obtained from
the discretization of the nonlinear operator F�. The solution of
problem NLS0�y� is obtained using the generalized Newton
method �GNM� which is an extension of the classical Newton
method to continuous nondifferentiable equations �8�. If F� is
differentiable this method is reduced to Newton’s method.

�̄J
0 given, � Gy��̄J

i ���̄J
i+1 − �̄J

i � = − Gy��̄J
i � �27�

�Gy��̄J
i � is a matrix in the set of the generalized Jacobian of Gy at

�J
i . The initial global problem AP can be written as a problem of

minimization under the constraint v�0�=u0 of the potential energy

of the system ��w�= 1
2�0

LF̂�w��x��w��x�dx−�0
Lfwdx. In order to

solve this problem, we have chosen to use the Lagrangian method.
This method consists in introducing a new variable �, called the
Lagrange multiplier, to treat the constraint v�0�=u0. We build a
function called Lagrangian L�w ,��=��w�+��w�0�−u0� such that
the solution is a saddle point of the Lagrangian �minimum for the
displacement, maximum for the multiplier�. This method could be
improved by the introduction of the augmented Lagrangian
method which consists in adding a new term depending on the
penalty factor r. The augmented Lagrangian is Lr�w ,��=��w�
+��w�0�−u0�+ �r /2��w�0�−u0�2. To find the saddle point solu-
tion, we write that the derivative of the augmented Lagrangian is
equal to zero. In other words, we have �Lr�v ,���w ,��=0. This
problem is first discretized on a wavelet basis in the same way as
in the previous part of this section �nonlinear discretized averaged

problem�:
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NLAP: Find �v̄ , �̄J� such that

Ĝ�v̄J,�̄J� = 0 �28�
This discretized problem is solved by the Generalized Newton
method.

4.2 Application to an Illustrating Example. Assume that
the function F is given by

F�x,u�� ª �E�x�u� if u� � �s�x�

Ê�x�u� + �E�x� − Ê�x���s�x� if u� 	 �s�x� �
�29�

and that for all x in the interval �xi
� ,xi

�+1� �1
 i
N, 1
�
 p,
x1

1=0, xi
p+1=xi+1

1 , xN
p+1=L� occupied by the �th small periodic rod,

we have E�x�=E�, Ê�x�= Ê�, �s�x�=�s
� �E� , Ê� ,�s

� be given�. In
this case, it is possible to compute the elementary terms of the
tangent matrix and of the right-hand side necessary for the gener-
alized Newton method

��Gy�.��KK� = �
�=1

�=p

E�
a�

��

��+1

� jk� j�k�d�

�Gy�.��K = − �
�=1

�=p

E�
ay�

��

��+1

� jkd� + �
�=1

�=p

�E�
b − E�

c���
s�

��

��+1

� jkd�

with K=k+1+�i=0
i=j−12i, E�

a =E� or Ê�. If E�
a =E� then E�

b =E�
c =E�,

and if E�
a = Ê� then E�

b = Ê� and E�
c =E�. In the next paragraphs, the

deformation is decomposed on the Haar basis. Due to the anti-
periodicity of the deformation and to the periodicity of the dis-
placement, we have

��

��
��� = �

j=0

j=J

�
k��j

� jk� jk, ���� = �
j=0

j=J

�
k��j

� jk�̄ jk �30�

where �̄ is the primitive of �, i.e., the Schauder basis.

5 Numerical Examples

5.1 First Example (Local Problem). In this first example, we
consider a two-phase composite. The elementary cell is split in
two equal parts. We denote with indices i=1 or 2 the coefficients
corresponding to each material �Fig. 3�. The first step is to com-
pute the terms of the tangent matrix. E�y� is constant on each
compact support of each wavelet � jk. The orthogonality of the
Haar basis leads to simple values

��Gy�.��11 = 1
2 �E1

a + E2
a�, ��Gy�.��KK = Ek

a, K 	 2,

�31�
��Gy�.��KK� = 0, K � K�

The term ��Gy�.��11 corresponds to the average of the Young
modulus over the cell, i.e., on the compact support of the wavelet.
The terms ��Gy�.��KK correspond to the average of the Young
modulus on the compact support of each wavelet � jk. The diago-
nality of the matrix shows the independence between each level.

Fig. 3 The first example with two materials on each
microstructure
Due to the same arguments in the previous paragraph, only the
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first component of the right-hand side of �27� has a value not
equal to zero. We obtain three different possible values. Thus

�Gy�.��1 = 1
2 �E2

a − E1
a�y + 1

2 �E1
b − E1

c��1
s + 1

2 �E2
b − E2

c��2
s

�32�
�Gy�.��K = 0 if K � 1

The global tangent matrix is diagonal and the right-hand side
has only its first term which is not equal to zero. We present a

numerical application with E1=80 GPa, E2=200 GPa, Ê1

=40 GPa, Ê2=100 GPa, �1
s =0.2 GPa, and �2

s =1 GPa. The mac-
roscopic deformation y increases from 0 to 0.6%. Due to the form
of the constitutive equation, the generalized Newton method con-
verges in one or two iterations. At each iteration this method is
initialized with the solution at the last step and so, if the solution
remains in the same region of linearity, the convergence is ob-
tained in only one iteration. If the region of linearity is changed,
due to the evolution of y, the convergence is obtained in two
iterations. Figure 4 shows the macroscopic response, i.e., a three
phase nonlinear elasticity, these values coincide with the results
presented in Refs. �4,5�.

5.2 Second Example. The second example concerns a three-
phase material. We denote with indices i=1, 2, 3 the coefficients
of each material �Fig. 5�. Due to the form of the microstructure,
the problem is more complex than the former one. The matrix is
not a diagonal one. There are interactions between the two first
levels of approximation. Thus, using the same notations, we ob-
tain the following tangent matrix

Fig. 4 Macroscopic behavior law „example with two materials…

Fig. 5 The second example: a composite with three materials

on each microstructure

Journal of Applied Mechanics
��Gy�.��

=�
1
4 �E1

a + 2E2
a + E3

a�
�2
4 �E1

a − E2
a�

�2
4 �E3

a − E2
a� 0 …

�2
4 �E1

a − E2
a� 1

2 �E1
a + E2

a� 0 0 …
�2
4 �E3

a − E2
a� 0 1

2 �E2
a + E3

a� 0 …

0 � �

� � E1
a

0 … … 0 E2
a

�
�33�

The right-hand side has only its three first terms which are not
equal to zero, thus in this case only three coefficients are not equal
to zero �00,�10, and �11. We present a numerical application with

E1=80 GPa, E2=200 GPa, E3=400 GPa, Ê1=40 GPa, Ê2

=100 GPa, Ê3=200 GPa, �1
s =0.2 GPa, �2

s =1 GPa, and �3
s

=1.5 GPa. Figure 6 shows the results obtained for the global re-
sponse: a nonlinear elasticity law with four phases, these values
are the same as those in the analytical approach presented in Refs.
�4,5�.

6 Conclusion
In this paper, we have presented results concerning the compu-

tations of the effective properties of laminated composites. Nu-
merical results show that the wavelet element method is a power-
ful tool for the characterization of composite materials. In the
future, we intend to extend the methods to more general laminated
composite �noninvolved behavior, non-perfect interfaces�.
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